Comparison of programming languages (algebraic data type)
This article compares the syntax for defining and instantiating an algebraic data type (ADT), sometimes also referred to as a tagged union, in various programming languages.
Examples of algebraic data types
Ceylon
In Ceylon, an ADT may be defined with:[1]
abstract class Tree()
of empty | Node {}
object empty
extends Tree() {}
final class Node(shared Integer val, shared Tree left, shared Tree right)
extends Tree() {}
And instantiated as:
value myTree = Node(42, Node(0, empty, empty), empty);
Clean
In Clean, an ADT may be defined with:[2]
:: Tree
= Empty
| Node Int Tree Tree
And instantiated as:
myTree = Node 42 (Node 0 Empty Empty) Empty
Coq
In Coq, an ADT may be defined with:[3]
Inductive tree : Type :=
| empty : tree
| node : nat -> tree -> tree -> tree.
And instantiated as:
Definition my_tree := node 42 (node 0 empty empty) empty.
C++
In C++, an ADT may be defined with:[4]
struct Empty final {};
struct Node final {
int value;
std::unique_ptr<std::variant<Empty, Node>> left;
std::unique_ptr<std::variant<Empty, Node>> right;
};
using Tree = std::variant<Empty, Node>;
And instantiated as:
Tree myTree { Node{
42,
std::make_unique<Tree>(Node{
0,
std::make_unique<Tree>(),
std::make_unique<Tree>()
}),
std::make_unique<Tree>()
} };
Dart
In Dart, an ADT may be defined with:[5]
sealed class Tree {}
final class Empty extends Tree {}
final class Node extends Tree {
final int value;
final Tree left, right;
Node(this.value, this.left, this.right);
}
And instantiated as:
final myTree = Node(42, Node(0, Empty(), Empty()), Empty());
Elm
In Elm, an ADT may be defined with:[6]
type Tree
= Empty
| Node Int Tree Tree
And instantiated as:
myTree = Node 42 (Node 0 Empty Empty) Empty
F#
In F#, an ADT may be defined with:[7]
type Tree =
| Empty
| Node of int * Tree * Tree
And instantiated as:
let myTree = Node(42, Node(0, Empty, Empty), Empty)
F*
In F*, an ADT may be defined with:[8]
type tree =
| Empty : tree
| Node : value:nat -> left:tree -> right:tree -> tree
And instantiated as:
let my_tree = Node 42 (Node 0 Empty Empty) Empty
Free Pascal
In Free Pascal, an ADT may be defined with:[9]
type
TTreeKind = (tkEmpty, tkNode);
PTree = ^TTree;
TTree = record
case FKind: TTreeKind of
tkEmpty: ();
tkNode: (
FValue: Integer;
FLeft, FRight: PTree;
);
end;
And instantiated as:
var
MyTree: PTree;
begin
new(MyTree);
MyTree^.FKind := tkNode;
MyTree^.FValue := 42;
new(MyTree^.FLeft);
MyTree^.FLeft^.FKind := tkNode;
MyTree^.FLeft^.FValue := 0;
new(MyTree^.FLeft^.FLeft);
MyTree^.FLeft^.FLeft^.FKind := tkEmpty;
new(MyTree^.FLeft^.FRight);
MyTree^.FLeft^.FRight^.FKind := tkEmpty;
new(MyTree^.FRight);
MyTree^.FRight^.FKind := tkEmpty;
end.
Haskell
In Haskell, an ADT may be defined with:[10]
data Tree
= Empty
| Node Int Tree Tree
And instantiated as:
myTree = Node 42 (Node 0 Empty Empty) Empty
Haxe
In Haxe, an ADT may be defined with:[11]
enum Tree {
Empty;
Node(value:Int, left:Tree, right:Tree);
}
And instantiated as:
var myTree = Node(42, Node(0, Empty, Empty), Empty);
Hope
In Hope, an ADT may be defined with:[12]
data tree == empty
++ node (num # tree # tree);
And instantiated as:
dec mytree : tree;
--- mytree <= node (42, node (0, empty, empty), empty);
Idris
In Idris, an ADT may be defined with:[13]
data Tree
= Empty
| Node Nat Tree Tree
And instantiated as:
myTree : Tree
myTree = Node 42 (Node 0 Empty Empty) Empty
Java
In Java, an ADT may be defined with:[14]
sealed interface Tree {
record Empty() implements Tree {}
record Node(int value, Tree left, Tree right) implements Tree {}
}
And instantiated as:
var myTree = new Tree.Node(
42,
new Tree.Node(0, new Tree.Empty(), new Tree.Empty()),
new Tree.Empty()
);
Julia
In Julia, an ADT may be defined with:[15]
struct Empty
end
struct Node
value::Int
left::Union{Empty, Node}
right::Union{Empty, Node}
end
const Tree = Union{Empty, Node}
And instantiated as:
mytree = Node(42, Node(0, Empty(), Empty()), Empty())
Kotlin
In Kotlin, an ADT may be defined with:[16]
sealed class Tree {
object Empty : Tree()
data class Node(val value: Int, val left: Tree, val right: Tree) : Tree()
}
And instantiated as:
val myTree = Tree.Node(
42,
Tree.Node(0, Tree.Empty, Tree.Empty),
Tree.Empty,
)
Limbo
In Limbo, an ADT may be defined with:[17]
Tree: adt {
pick {
Empty =>
Node =>
value: int;
left: ref Tree;
right: ref Tree;
}
};
And instantiated as:
myTree := ref Tree.Node(
42,
ref Tree.Node(0, ref Tree.Empty(), ref Tree.Empty()),
ref Tree.Empty()
);
Mercury
In Mercury, an ADT may be defined with:[18]
:- type tree
---> empty
; node(int, tree, tree).
And instantiated as:
:- func my_tree = tree.
my_tree = node(42, node(0, empty, empty), empty).
Miranda
In Miranda, an ADT may be defined with:[19]
tree ::=
Empty
| Node num tree tree
And instantiated as:
my_tree = Node 42 (Node 0 Empty Empty) Empty
Nemerle
In Nemerle, an ADT may be defined with:[20]
variant Tree
{
| Empty
| Node {
value: int;
left: Tree;
right: Tree;
}
}
And instantiated as:
def myTree = Tree.Node(
42,
Tree.Node(0, Tree.Empty(), Tree.Empty()),
Tree.Empty(),
);
Nim
In Nim, an ADT may be defined with:[21]
type
TreeKind = enum
tkEmpty
tkNode
Tree = ref TreeObj
TreeObj = object
case kind: TreeKind
of tkEmpty:
discard
of tkNode:
value: int
left, right: Tree
And instantiated as:
let myTree = Tree(kind: tkNode, value: 42,
left: Tree(kind: tkNode, value: 0,
left: Tree(kind: tkEmpty),
right: Tree(kind: tkEmpty)),
right: Tree(kind: tkEmpty))
OCaml
In OCaml, an ADT may be defined with:[22]
type tree =
| Empty
| Node of int * tree * tree
And instantiated as:
let my_tree = Node (42, Node (0, Empty, Empty), Empty)
Opa
In Opa, an ADT may be defined with:[23]
type tree =
{ empty } or
{ node, int value, tree left, tree right }
And instantiated as:
my_tree = {
node,
value: 42,
left: {
node,
value: 0,
left: { empty },
right: { empty }
},
right: { empty }
}
OpenCog
In OpenCog, an ADT may be defined with:[24]
PureScript
In PureScript, an ADT may be defined with:[25]
data Tree
= Empty
| Node Int Tree Tree
And instantiated as:
myTree = Node 42 (Node 0 Empty Empty) Empty
Python
In Python, an ADT may be defined with:[26]
from __future__ import annotations
from dataclasses import dataclass
@dataclass
class Empty:
pass
@dataclass
class Node:
value: int
left: Tree
right: Tree
Tree = Empty | Node
And instantiated as:
my_tree = Node(42, Node(0, Empty(), Empty()), Empty())
Racket
In Typed Racket, an ADT may be defined with:[27]
(struct Empty ())
(struct Node ([value : Integer] [left : Tree] [right : Tree]))
(define-type Tree (U Empty Node))
And instantiated as:
(define my-tree (Node 42 (Node 0 (Empty) (Empty)) (Empty)))
Reason
Reason
In Reason, an ADT may be defined with:[28]
type Tree =
| Empty
| Node(int, Tree, Tree);
And instantiated as:
let myTree = Node(42, Node(0, Empty, Empty), Empty);
ReScript
In ReScript, an ADT may be defined with:[29]
type rec Tree =
| Empty
| Node(int, Tree, Tree)
And instantiated as:
let myTree = Node(42, Node(0, Empty, Empty), Empty)
Rust
In Rust, an ADT may be defined with:[30]
enum Tree {
Empty,
Node(i32, Box<Tree>, Box<Tree>),
}
And instantiated as:
let my_tree = Tree::Node(
42,
Box::new(Tree::Node(0, Box::new(Tree::Empty), Box::new(Tree::Empty)),
Box::new(Tree::Empty),
);
Scala
Scala 2
In Scala 2, an ADT may be defined with:[citation needed]
sealed abstract class Tree extends Product with Serializable
object Tree {
final case object Empty extends Tree
final case class Node(value: Int, left: Tree, right: Tree)
extends Tree
}
And instantiated as:
val myTree = Tree.Node(
42,
Tree.Node(0, Tree.Empty, Tree.Empty),
Tree.Empty
)
Scala 3
In Scala 3, an ADT may be defined with:[31]
enum Tree:
case Empty
case Node(value: Int, left: Tree, right: Tree)
And instantiated as:
val myTree = Tree.Node(
42,
Tree.Node(0, Tree.Empty, Tree.Empty),
Tree.Empty
)
Standard ML
In Standard ML, an ADT may be defined with:[32]
datatype tree =
EMPTY
| NODE of int * tree * tree
And instantiated as:
val myTree = NODE (42, NODE (0, EMPTY, EMPTY), EMPTY)
Swift
In Swift, an ADT may be defined with:[33]
enum Tree {
case empty
indirect case node(Int, Tree, Tree)
}
And instantiated as:
let myTree: Tree = .node(42, .node(0, .empty, .empty), .empty)
TypeScript
In TypeScript, an ADT may be defined with:[34]
type Tree =
| { kind: "empty" }
| { kind: "node"; value: number; left: Tree; right: Tree };
And instantiated as:
const myTree: Tree = {
kind: "node",
value: 42,
left: {
kind: "node",
value: 0,
left: { kind: "empty" },
right: { kind: "empty" },
},
right: { kind: "empty" },
};
Visual Prolog
In Visual Prolog, an ADT may be defined with:[35]
domains
tree = empty; node(integer, tree, tree).
And instantiated as:
constants
my_tree : tree = node(42, node(0, empty, empty), empty).
References
- ↑ "Eclipse Ceylon: Union, intersection, and enumerated types". https://ceylon-lang.org/documentation/1.3/tour/types/#enumerated_types.
- ↑ "Clean 2.2 Ref Man". https://clean.cs.ru.nl/download/html_report/CleanRep.2.2_7.htm#_Toc311798039.
- ↑ "Inductive types and recursive functions — Coq 8.14.1 documentation". https://coq.inria.fr/refman/language/core/inductive.html.
- ↑ "std::variant - cppreference.com". https://en.cppreference.com/w/cpp/utility/variant.
- ↑ "Patterns" (in en). https://dart.dev/language/patterns#algebraic-data-types.
- ↑ "Custom Types · An Introduction to Elm". https://guide.elm-lang.org/types/custom_types.html.
- ↑ cartermp. "Discriminated Unions - F#" (in en-us). https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/discriminated-unions.
- ↑ "Inductive types and pattern matching — Proof-Oriented Programming in F* documentation". https://www.fstar-lang.org/tutorial/book/part1/part1_inductives.html.
- ↑ "Record types". https://www.freepascal.org/docs-html/current/ref/refsu15.html.
- ↑ "4 Declarations and Bindings". https://www.haskell.org/onlinereport/haskell2010/haskellch4.html#x10-690004.2.1.
- ↑ "Enum Instance". https://haxe.org/manual/types-enum-instance.html.
- ↑ "Defining your own data types". 2011-08-10. http://www.soi.city.ac.uk/~ross/Hope/hope_tut/node18.html.
- ↑ "Types and Functions — Idris2 0.0 documentation". https://idris2.readthedocs.io/en/latest/tutorial/typesfuns.html#data-types.
- ↑ "JEP 409: Sealed Classes". https://openjdk.java.net/jeps/409.
- ↑ "Types · The Julia Language". https://docs.julialang.org/en/v1/manual/types/#Type-Unions.
- ↑ "Sealed classes | Kotlin" (in en-US). https://kotlinlang.org/docs/sealed-classes.html.
- ↑ Stanley-Marbell, Phillip (2003) (in English). Inferno Programming with Limbo. Wiley. pp. 67–71. ISBN 978-0470843529.
- ↑ "The Mercury Language Reference Manual: Discriminated unions". https://www.mercurylang.org/information/doc-release/mercury_ref/Discriminated-unions.html.
- ↑ "An Overview of Miranda". https://www.cs.kent.ac.uk/people/staff/dat/miranda/Overview.html#User.
- ↑ "Basic Variants · rsdn/nemerle Wiki" (in en). https://github.com/rsdn/nemerle/wiki/Basic-Variants/4fcecdfa79c0751f70bff83225e125f40425d1f4.
- ↑ "Nim Manual". https://nim-lang.org/docs/manual.html#types-object-variants.
- ↑ "OCaml - The OCaml language". https://ocaml.org/manual/typedecl.html.
- ↑ "The type system · MLstate/opalang Wiki" (in en). https://github.com/MLstate/opalang/wiki/The-type-system/aacaf2c26b1e20189e01923cf1f9a813f355b592#sum-1.
- ↑ "Type constructor - OpenCog". https://wiki.opencog.org/w/Type_constructor.
- ↑ purescript/documentation, PureScript, 2021-11-24, https://github.com/purescript/documentation/blob/7295b335dfbda17015e68f4c74b81e91007f79b8/language/Types.md#tagged-unions, retrieved 2021-11-30
- ↑ PEP 484 – Type Hints, Python, https://peps.python.org/pep-0484/#union-types
- ↑ "2 Beginning Typed Racket". https://docs.racket-lang.org/ts-guide/beginning.html#(part._.Datatypes_and_.Unions).
- ↑ "Variants · Reason" (in en). https://reasonml.github.io/docs/en/variant.
- ↑ "Variant | ReScript Language Manual". https://rescript-lang.org/docs/manual/latest/variant.
- ↑ "enum - Rust". https://doc.rust-lang.org/std/keyword.enum.html.
- ↑ "Algebraic Data Types". https://docs.scala-lang.org/scala3/reference/enums/adts.html.
- ↑ "Defining datatypes". https://homepages.inf.ed.ac.uk/stg/NOTES/node41.html.
- ↑ "Enumerations — The Swift Programming Language (Swift 5.5)". https://docs.swift.org/swift-book/LanguageGuide/Enumerations.html.
- ↑ "Documentation - TypeScript for Functional Programmers" (in en). https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes-func.html#discriminated-unions.
- ↑ "Language Reference/Domains - wiki.visual-prolog.com". https://wiki.visual-prolog.com/index.php?title=Language_Reference/Domains#Compound_Domains.
