Compound of twenty octahedra with rotational freedom

From HandWiki
Short description: Polyhedral compound
Compound of twenty octahedra with rotational freedom
UC13-20 octahedra.png
Type Uniform compound
Index UC13
Polyhedra 20 octahedra
Faces 40+120 triangles
Edges 240
Vertices 120
Symmetry group icosahedral (Ih)
Subgroup restricting to one constituent 6-fold improper rotation (S6)

The compound of twenty octahedra with rotational freedom is a uniform polyhedron compound. It's composed of a symmetric arrangement of 20 octahedra, considered as triangular antiprisms. It can be constructed by superimposing two copies of the compound of 10 octahedra UC16, and for each resulting pair of octahedra, rotating each octahedron in the pair by an equal and opposite angle θ.

When θ is zero or 60 degrees, the octahedra coincide in pairs yielding (two superimposed copies of) the compounds of ten octahedra UC16 and UC15 respectively. When

[math]\displaystyle{ \theta=2\tan^{-1}\left(\sqrt{\frac{1}{3}\left(13-4\sqrt{10}\right)}\right)\approx 37.76124^\circ, }[/math]

octahedra (from distinct rotational axes) coincide in sets four, yielding the compound of five octahedra. When

[math]\displaystyle{ \theta=2\tan^{-1}\left(\frac{-4\sqrt{3}-2\sqrt{15}+\sqrt{132+60\sqrt{5}}}{4+\sqrt{2}+2\sqrt{5}+\sqrt{10}}\right)\approx14.33033^\circ, }[/math]

the vertices coincide in pairs, yielding the compound of twenty octahedra (without rotational freedom).

Cartesian coordinates

Cartesian coordinates for the vertices of this compound are all the cyclic permutations of

[math]\displaystyle{ \begin{align} & \scriptstyle \Big( \pm2\sqrt3\sin\theta,\, \pm(\tau^{-1}\sqrt2+2\tau\cos\theta),\, \pm(\tau\sqrt2-2\tau^{-1}\cos\theta) \Big) \\ & \scriptstyle \Big( \pm(\sqrt2 -\tau^2\cos\theta + \tau^{-1}\sqrt3\sin\theta),\, \pm(\sqrt2 + (2\tau-1)\cos\theta + \sqrt3\sin\theta),\, \pm(\sqrt2 + \tau^{-2}\cos\theta - \tau\sqrt3\sin\theta) \Big) \\ & \scriptstyle \Big(\pm(\tau^{-1}\sqrt2-\tau\cos\theta-\tau\sqrt3\sin\theta),\, \pm(\tau\sqrt2 + \tau^{-1}\cos\theta+\tau^{-1}\sqrt3\sin\theta),\, \pm(3\cos\theta-\sqrt3\sin\theta) \Big) \\ & \scriptstyle \Big(\pm(-\tau^{-1}\sqrt2 + \tau\cos\theta - \tau\sqrt 3\sin\theta),\, \pm(\tau\sqrt2 + \tau^{-1}\cos\theta-\tau^{-1}\sqrt3\sin\theta),\, \pm(3\cos\theta+\sqrt3\sin\theta) \Big) \\ & \scriptstyle \Big(\pm(-\sqrt 2 + \tau^2\cos\theta+\tau^{-1}\sqrt 3 \sin\theta), \, \pm(\sqrt 2 + (2\tau-1)\cos\theta - \sqrt 3 \sin\theta), \, \pm(\sqrt 2 + \tau^{-2}\cos\theta + \tau\sqrt 3 \sin\theta) \Big) \end{align} }[/math]

where τ = (1 + 5)/2 is the golden ratio (sometimes written φ).

Gallery

References

  • Skilling, John (1976), "Uniform Compounds of Uniform Polyhedra", Mathematical Proceedings of the Cambridge Philosophical Society 79 (3): 447–457, doi:10.1017/S0305004100052440 .