Condensation point

From HandWiki

In mathematics, a condensation point p of a subset S of a topological space is any point p such that every neighborhood of p contains uncountably many points of S. Thus "condensation point" is synonymous with "[math]\displaystyle{ \aleph_1 }[/math]-accumulation point".[1]

Examples

  • If S = (0,1) is the open unit interval, a subset of the real numbers, then 0 is a condensation point of S.
  • If S is an uncountable subset of a set X endowed with the indiscrete topology, then any point p of X is a condensation point of X as the only neighborhood of p is X itself.

References

  • Walter Rudin, Principles of Mathematical Analysis, 3rd Edition, Chapter 2, exercise 27
  • John C. Oxtoby, Measure and Category, 2nd Edition (1980),
  • Lynn Steen and J. Arthur Seebach, Jr., Counterexamples in Topology, 2nd Edition, pg. 4