Constant problem
In mathematics, the constant problem is the problem of deciding whether a given expression is equal to zero.
The problem
This problem is also referred to as the identity problem[1] or the method of zero estimates. It has no formal statement as such but refers to a general problem prevalent in transcendental number theory. Often proofs in transcendence theory are proofs by contradiction. Specifically, they use some auxiliary function to create an integer n ≥ 0, which is shown to satisfy n < 1. Clearly, this means that n must have the value zero, and so a contradiction arises if one can show that in fact n is not zero.
In many transcendence proofs, proving that n ≠ 0 is very difficult, and hence a lot of work has been done to develop methods that can be used to prove the non-vanishing of certain expressions. The sheer generality of the problem is what makes it difficult to prove general results or come up with general methods for attacking it. The number n that arises may involve integrals, limits, polynomials, other functions, and determinants of matrices.
Results
In certain cases, algorithms or other methods exist for proving that a given expression is non-zero, or of showing that the problem is undecidable. For example, if x1, ..., xn are real numbers, then there is an algorithm[2] for deciding whether there are integers a1, ..., an such that
- [math]\displaystyle{ a_1 x_1 + \cdots + a_n x_n = 0\,. }[/math]
If the expression we are interested in contains an oscillating function, such as the sine or cosine function, then it has been shown that the problem is undecidable, a result known as Richardson's theorem. In general, methods specific to the expression being studied are required to prove that it cannot be zero.
See also
References
- ↑ Richardson, Daniel (1968). "Some Unsolvable Problems Involving Elementary Functions of a Real Variable". Journal of Symbolic Logic 33: 514–520. doi:10.2307/2271358.
- ↑ Bailey, David H. (January 1988). "Numerical Results on the Transcendence of Constants Involving π, e, and Euler's Constant". Mathematics of Computation 50 (20): 275–281. doi:10.1090/S0025-5718-1988-0917835-1. http://www.davidhbailey.com/dhbpapers/const.pdf.
Original source: https://en.wikipedia.org/wiki/Constant problem.
Read more |