Convex cap

From HandWiki

A convex cap is a well defined structure in mathematics commonly used in convex geometry for approximating convex shapes. It is used in the construction of convex floating bodies[1] (or just floating body[2]). It is the intersection of a convex body with a half-space.

Definition

A cap C can be defined as the intersection of a half-space H+ with a convex set K. Note that the cap can be defined in n-dimensional space.

The definition of a cap can also be extended to define a cap of a point x where the cap C can be defined as the intersection of a convex set K with a half-space H+ containing x. The minimal cap of a point is a cap of x with

vol(C(x))=min{vol(KH+):xH+},[3][4]

where vol denotes n-dimensional volume.

Floating Bodies and Caps

We can define the floating body of a convex body Kn using the following process. Note the floating body is also convex. In the case of a 2-dimensional convex body K (with non-empty interior), let (a small) δ>0 be given. The floating body of this 2-dimensional shape is given by removing all the 2-dimensional caps of area δ from the original body. The resulting shape will be our convex floating body Kδ. We generalize this definition to n dimensions by starting with an n-dimensional convex shape and removing caps of n-dimensional volume δ.

Relation to affine surface area

As δ0, the floating body more closely approximates K. This information can tell us about the affine surface area Ω(K) of K which measures how the boundary behaves in this situation. If we take the convex floating body of a two-dimensional convex shape, we notice that the distance from the boundary of the floating body to the boundary of the convex shape is related to the convex shape's curvature. Specifically, convex shapes with higher curvature have a higher distance between the two boundaries. Taking a look at the difference in the areas of the original body and the floating body as δ0. Using the relation between curvature and distance, we can deduce that A(K)A(Kδ) is also dependent on the curvature. Thus,

Ω(K)=bdKκ(x)13dl(x)A(K)A(Kδ)δ23.[5]

In this formula, κ(x) is the curvature of bdK at x and l is the length element.

We can generalize distance, area and volume for n dimensions using the Hausdorff measure. This definition, then works for all n2. Here, κ(x) is the Gaussian curvature. So, the affine surface area for an n-dimensional convex shape is

bdKκ(x)1n+1dσ(x)vol(K)vol(Kδ)δ2n+1

where σ(x) is the (n1)-dimensional Hausdorff measure.[5]

Wet part of a convex body

The wet part of a convex body can be defined as K(t)=K(vt)={xK:v(x)t} where t is any real number describing the maximum volume of the wet part and v(x)=min{vol(KH):xH}.[3][4]

We can see that using a non-degenerate linear transformation (one whose matrix is invertible) preserves any properties of K(t). So, we can say that v:K is equivariant under these types of transformations. Using this notation, vAK(Ax)=|detA|vK(x). Note that

vol(K(vtvol(K)))vol(K)

is also equivariant under non-degenerate linear transformations.

Caps for approximation

Assume K𝒦1n={Kn:K convex, vol(K)=1} and choose x1,...,xm randomly, independently and according to the uniform distribution from K. Then, Km=conv{x1,...,xm} is a random polytope.[3] Intuitively, it is clear that as m, Km approaches K. We can determine how well Km approximates K in various measures of approximation, but we mainly focus on the volume. So, we define E(K,m)=E(volKvolKm), when E refers to the expected value. We use K(t)=K(vt) as the wet part of K and K(vt) as the floating body of K. The following theorem states that the general principle governing E(K,m) is of the same order as the magnitude of the volume of the wet part with t=1m.

Theorem

For K𝒦1n and mn+1, volK(1m)E(K,m)volK(1m).[3] The proof of this theorem is based on the technique of M-regions and cap coverings. We can use the minimal cap which is a cap C(x) containing x and satisfying volC(x)=v(x). Although the minimal cap is not unique, this doesn't have an effect on the proof of the theorem.

Lemma

If xK and v(x)<ε0, then C(x)M(x,3n) for every minimal cap C(x).[3]

Since M(x)C2(x), this lemma establishes the equivalence of the M-regions M(x) and a minimal cap C(x), where C2(x) is a blown up copy of C(x) by a factor 2 around x. Thus, M-regions and minimal caps can be interchanged freely, without losing more than a constant factor in estimates.

Economic cap covering

A cap covering can be defined as the set of caps that completely cover some boundary D. By minimizing the size of each cap, we can minimize the size of the set of caps and create a new set. This set of caps with minimal volume is called an economic cap covering and can be explicitly defined as the set of caps C covering some boundary D where each Ci has some minimal width ε and the total volume of this covering is ≪ εvol(D).[3]

References

  1. Besau, Florian; Werner, Elisabeth M. (October 2016). "The spherical convex floating body". Advances in Mathematics 301: 867–901. doi:10.1016/j.aim.2016.07.001. ISSN 0001-8708. 
  2. M., Nagy, Stanislav Schütt, Carsten Werner, Elisabeth (2019). Halfspace depth and floating body. The American Statistical Association, the Bernoulli Society, the Institute of Mathematical Statistics, and the Statistical Society of Canada. OCLC 1108755798. http://worldcat.org/oclc/1108755798. 
  3. 3.0 3.1 3.2 3.3 3.4 3.5 Bárány, Imre (2007). "Random Polytopes, Convex Bodies, and Approximation" (in en). Stochastic Geometry: Lectures Given at the C.I.M.E. Summer School Held in Martina Franca, Italy, September 13–18, 2004. Lecture Notes in Mathematics. 1892. Springer. pp. 77–118. doi:10.1007/978-3-540-38175-4_2. ISBN 978-3-540-38174-7. https://link.springer.com/content/pdf/10.1007/978-3-540-38175-4_2.pdf. 
  4. 4.0 4.1 "Floating Bodies - Numberphile" (in en). https://www.youtube.com/watch?v=c4pgWd8V8HU&t=5s. 
  5. 5.0 5.1 Ludwig, Monika; Reitzner, Matthias (15 October 1999). "A Characterization of Affine Surface Area" (in en). Advances in Mathematics 147 (1): 138–172. doi:10.1006/aima.1999.1832. ISSN 0001-8708.