Core (graph theory)

From HandWiki

In the mathematical field of graph theory, a core is a notion that describes behavior of a graph with respect to graph homomorphisms.

Definition

Graph C is a core if every homomorphism f:CC is an isomorphism, that is it is a bijection of vertices of C.

A core of a graph G is a graph C such that

  1. There exists a homomorphism from G to C,
  2. there exists a homomorphism from C to G, and
  3. C is minimal with this property.

Two graphs are said to be homomorphism equivalent or hom-equivalent if they have isomorphic cores.

Examples

Properties

Every finite graph has a core, which is determined uniquely, up to isomorphism. The core of a graph G is always an induced subgraph of G. If GH and HG then the graphs G and H are necessarily homomorphically equivalent.

Computational complexity

It is NP-complete to test whether a graph has a homomorphism to a proper subgraph, and co-NP-complete to test whether a graph is its own core (i.e. whether no such homomorphism exists) (Hell Nešetřil).

References

  • Godsil, Chris, and Royle, Gordon. Algebraic Graph Theory. Graduate Texts in Mathematics, Vol. 207. Springer-Verlag, New York, 2001. Chapter 6 section 2.
  • "The core of a graph", Discrete Mathematics 109 (1-3): 117–126, 1992, doi:10.1016/0012-365X(92)90282-K .
  • "Proposition 3.5", Sparsity: Graphs, Structures, and Algorithms, Algorithms and Combinatorics, 28, Heidelberg: Springer, 2012, p. 43, doi:10.1007/978-3-642-27875-4, ISBN 978-3-642-27874-7 .