Covering code

From HandWiki

In coding theory, a covering code is a set of elements (called codewords) in a space, with the property that every element of the space is within a fixed distance of some codeword.

Definition

Let [math]\displaystyle{ q\geq 2 }[/math], [math]\displaystyle{ n\geq 1 }[/math], [math]\displaystyle{ R\geq 0 }[/math] be integers. A code [math]\displaystyle{ C\subseteq Q^n }[/math] over an alphabet Q of size |Q| = q is called q-ary R-covering code of length n if for every word [math]\displaystyle{ y\in Q^n }[/math] there is a codeword [math]\displaystyle{ x\in C }[/math] such that the Hamming distance [math]\displaystyle{ d_H(x,y)\leq R }[/math]. In other words, the spheres (or balls or rook-domains) of radius R with respect to the Hamming metric around the codewords of C have to exhaust the finite metric space [math]\displaystyle{ Q^n }[/math]. The covering radius of a code C is the smallest R such that C is R-covering. Every perfect code is a covering code of minimal size.

Example

C = {0134,0223,1402,1431,1444,2123,2234,3002,3310,4010,4341} is a 5-ary 2-covering code of length 4.[1]

Covering problem

The determination of the minimal size [math]\displaystyle{ K_q(n,R) }[/math] of a q-ary R-covering code of length n is a very hard problem. In many cases, only upper and lower bounds are known with a large gap between them. Every construction of a covering code gives an upper bound on Kq(nR). Lower bounds include the sphere covering bound and Rodemich's bounds [math]\displaystyle{ K_q(n,1)\geq q^{n-1}/(n-1) }[/math] and [math]\displaystyle{ K_q(n,n-2)\geq q^2/(n-1) }[/math].[2] The covering problem is closely related to the packing problem in [math]\displaystyle{ Q^n }[/math], i.e. the determination of the maximal size of a q-ary e-error correcting code of length n.

Football pools problem

A particular case is the football pools problem, based on football pool betting, where the aim is to come up with a betting system over n football matches that, regardless of the outcome, has at most R 'misses'. Thus, for n matches with at most one 'miss', a ternary covering, K3(n,1), is sought.

If [math]\displaystyle{ n=\tfrac12 (3^k-1) }[/math] then 3n-k are needed, so for n = 4, k = 2, 9 are needed; for n = 13, k = 3, 59049 are needed.[3] The best bounds known as of 2011[4] are

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
K3(n,1) 1 3 5 9 27 71-73 156-186 402-486 1060-1269 2854-3645 7832-9477 21531-27702 59049 166610-177147
K3(n,2) 1 3 3 8 15-17 26-34 54-81 130-219 323-555 729 1919-2187 5062-6561 12204-19683
K3(n,3) 1 3 3 6 11-12 14-27 27-54 57-105 117-243 282-657 612-1215 1553-2187

Applications

The standard work[5] on covering codes lists the following applications.

References

  1. P.R.J. Östergård, Upper bounds for q-ary covering codes, IEEE Transactions on Information Theory, 37 (1991), 660-664
  2. E.R. Rodemich, Covering by rook-domains, Journal of Combinatorial Theory, 9 (1970), 117-128
  3. Kamps, H.J.L.; van Lint, J.H. (December 1967). "The football pool problem for 5 matches" (in en). Journal of Combinatorial Theory 3 (4): 315–325. doi:10.1016/S0021-9800(67)80102-9. http://alexandria.tue.nl/repository/freearticles/593454.pdf. Retrieved 9 November 2022. 
  4. "Bounds on K3(n, R) (lower and upper bounds on the size of ternary optimal covering codes)" (in en). http://old.sztaki.hu/~keri/codes/3_tables.pdf. 
  5. G. Cohen, I. Honkala, S. Litsyn, A. Lobstein, Covering Codes, Elsevier (1997) ISBN:0-444-82511-8
  6. H. Hämäläinen, I. Honkala, S. Litsyn, P.R.J. Östergård, Football pools - a game for mathematicians, American Mathematical Monthly, 102 (1995), 579-588

External links