Critical graph

From HandWiki
Short description: Undirected graph
On the left-top a vertex critical graph with chromatic number 6; next all the N-1 subgraphs with chromatic number 5.

In graph theory, a critical graph is an undirected graph all of whose proper subgraphs have smaller chromatic number. In such a graph, every vertex or edge is a critical element, in the sense that its deletion would decrease the number of colors needed in a graph coloring of the given graph. The decrease in the number of colors cannot be by more than one.

Variations

A [math]\displaystyle{ k }[/math]-critical graph is a critical graph with chromatic number [math]\displaystyle{ k }[/math]. A graph [math]\displaystyle{ G }[/math] with chromatic number [math]\displaystyle{ k }[/math] is [math]\displaystyle{ k }[/math]-vertex-critical if each of its vertices is a critical element. Critical graphs are the minimal members in terms of chromatic number, which is a very important measure in graph theory.

Some properties of a [math]\displaystyle{ k }[/math]-critical graph [math]\displaystyle{ G }[/math] with [math]\displaystyle{ n }[/math] vertices and [math]\displaystyle{ m }[/math] edges:

  • [math]\displaystyle{ G }[/math] has only one component.
  • [math]\displaystyle{ G }[/math] is finite (this is the de Bruijn–Erdős theorem).[1]
  • The minimum degree [math]\displaystyle{ \delta(G) }[/math] obeys the inequality [math]\displaystyle{ \delta(G)\ge k-1 }[/math]. That is, every vertex is adjacent to at least [math]\displaystyle{ k-1 }[/math] others. More strongly, [math]\displaystyle{ G }[/math] is [math]\displaystyle{ (k-1) }[/math]-edge-connected.[2]
  • If [math]\displaystyle{ G }[/math] is a regular graph with degree [math]\displaystyle{ k-1 }[/math], meaning every vertex is adjacent to exactly [math]\displaystyle{ k-1 }[/math] others, then [math]\displaystyle{ G }[/math] is either the complete graph [math]\displaystyle{ K_k }[/math] with [math]\displaystyle{ n=k }[/math] vertices, or an odd-length cycle graph. This is Brooks' theorem.[3]
  • [math]\displaystyle{ 2m\ge(k-1)n+k-3 }[/math].[4]
  • [math]\displaystyle{ 2m\ge (k-1)n+\lfloor(k-3)/(k^2-3)\rfloor n }[/math].[5]
  • Either [math]\displaystyle{ G }[/math] may be decomposed into two smaller critical graphs, with an edge between every pair of vertices that includes one vertex from each of the two subgraphs, or [math]\displaystyle{ G }[/math] has at least [math]\displaystyle{ 2k-1 }[/math] vertices.[6] More strongly, either [math]\displaystyle{ G }[/math] has a decomposition of this type, or for every vertex [math]\displaystyle{ v }[/math] of [math]\displaystyle{ G }[/math] there is a [math]\displaystyle{ k }[/math]-coloring in which [math]\displaystyle{ v }[/math] is the only vertex of its color and every other color class has at least two vertices.[7]

Graph [math]\displaystyle{ G }[/math] is vertex-critical if and only if for every vertex [math]\displaystyle{ v }[/math], there is an optimal proper coloring in which [math]\displaystyle{ v }[/math] is a singleton color class.

As (Hajós 1961) showed, every [math]\displaystyle{ k }[/math]-critical graph may be formed from a complete graph [math]\displaystyle{ K_k }[/math] by combining the Hajós construction with an operation that identifies two non-adjacent vertices. The graphs formed in this way always require [math]\displaystyle{ k }[/math] colors in any proper coloring.[8]

A double-critical graph is a connected graph in which the deletion of any pair of adjacent vertices decreases the chromatic number by two. It is an open problem to determine whether [math]\displaystyle{ K_k }[/math] is the only double-critical [math]\displaystyle{ k }[/math]-chromatic graph.[9]

See also

References

  1. de Bruijn, N. G.; Erdős, P. (1951), "A colour problem for infinite graphs and a problem in the theory of relations", Nederl. Akad. Wetensch. Proc. Ser. A 54: 371–373, doi:10.1016/S1385-7258(51)50053-7, https://research.tue.nl/nl/publications/a-colour-problem-for-infinite-graphs-and-a-problem-in-the-theory-of-relations(8bb2b225-bd1a-4924-97ee-0eefca35f01b).html . (Indag. Math. 13.)
  2. Lovász, László (1992), "Solution to Exercise 9.21", Combinatorial Problems and Exercises (2nd ed.), North-Holland, ISBN 978-0-8218-6947-5 
  3. Brooks, R. L. (1941), "On colouring the nodes of a network", Proceedings of the Cambridge Philosophical Society 37 (2): 194–197, doi:10.1017/S030500410002168X, Bibcode1941PCPS...37..194B 
  4. Dirac, G. A. (1957), "A theorem of R. L. Brooks and a conjecture of H. Hadwiger", Proceedings of the London Mathematical Society 7 (1): 161–195, doi:10.1112/plms/s3-7.1.161 
  5. Gallai, T. (1963), "Kritische Graphen I", Publ. Math. Inst. Hungar. Acad. Sci. 8: 165–192 
  6. Gallai, T. (1963), "Kritische Graphen II", Publ. Math. Inst. Hungar. Acad. Sci. 8: 373–395 
  7. Stehlík, Matěj (2003), "Critical graphs with connected complements", Journal of Combinatorial Theory, Series B 89 (2): 189–194, doi:10.1016/S0095-8956(03)00069-8 
  8. Hajós, G. (1961), "Über eine Konstruktion nicht n-färbbarer Graphen", Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 10: 116–117 
  9. Erdős, Paul (1967), "Problem 2", In Theory of Graphs, Proc. Colloq., Tihany, p. 361 

Further reading

  • Jensen, T. R.; Toft, B. (1995), Graph coloring problems, New York: Wiley-Interscience, ISBN 0-471-02865-7 
  • Stiebitz, Michael; Tuza, Zsolt; Voigt, Margit (6 August 2009), "On list critical graphs", Discrete Mathematics (Elsevier) 309 (15): 4931–4941, doi:10.1016/j.disc.2008.05.021