Cyclical monotonicity

From HandWiki

In mathematics, cyclical monotonicity is a generalization of the notion of monotonicity to the case of vector-valued function.[1][2]

Definition

Let [math]\displaystyle{ \langle\cdot,\cdot\rangle }[/math] denote the inner product on an inner product space [math]\displaystyle{ X }[/math] and let [math]\displaystyle{ U }[/math] be a nonempty subset of [math]\displaystyle{ X }[/math]. A correspondence [math]\displaystyle{ f: U \rightrightarrows X }[/math] is called cyclically monotone if for every set of points [math]\displaystyle{ x_1,\dots,x_{m+1} \in U }[/math] with [math]\displaystyle{ x_{m+1}=x_1 }[/math] it holds that [math]\displaystyle{ \sum_{k=1}^m \langle x_{k+1},f(x_{k+1})-f(x_k)\rangle\geq 0. }[/math][3]

Properties

  • For the case of scalar functions of one variable the definition above is equivalent to usual monotonicity.
  • Gradients of convex functions are cyclically monotone.
  • In fact, the converse is true.[4] Suppose [math]\displaystyle{ U }[/math] is convex and [math]\displaystyle{ f: U \rightrightarrows \mathbb{R}^n }[/math] is a correspondence with nonempty values. Then if [math]\displaystyle{ f }[/math] is cyclically monotone, there exists an upper semicontinuous convex function [math]\displaystyle{ F:U\to \mathbb{R} }[/math] such that [math]\displaystyle{ f(x)\subset \partial F(x) }[/math] for every [math]\displaystyle{ x\in U }[/math], where [math]\displaystyle{ \partial F(x) }[/math] denotes the subgradient of [math]\displaystyle{ F }[/math] at [math]\displaystyle{ x }[/math].[5]

See also

References

  1. Levin, Vladimir (1 March 1999). "Abstract Cyclical Monotonicity and Monge Solutions for the General Monge–Kantorovich Problem" (in en). Set-Valued Analysis (Germany: Springer Science+Business Media) 7: 7–32. doi:10.1023/A:1008753021652. 
  2. Beiglböck, Mathias (May 2015). "Cyclical monotonicity and the ergodic theorem" (in en). Ergodic Theory and Dynamical Systems (Cambridge University Press) 35 (3): 710–713. doi:10.1017/etds.2013.75. 
  3. Chambers, Christopher P.; Echenique, Federico (2016). Revealed Preference Theory. Cambridge University Press. p. 9. 
  4. Rockafellar, R. Tyrrell, 1935- (2015-04-29). Convex analysis. Princeton, N.J.. ISBN 9781400873173. OCLC 905969889. [page needed]
  5. http://www.its.caltech.edu/~kcborder/Courses/Notes/CyclicalMonotonicity.pdf[bare URL PDF]