De Rham invariant
In geometric topology, the de Rham invariant is a mod 2 invariant of a (4k+1)-dimensional manifold, that is, an element of [math]\displaystyle{ \mathbf{Z}/2 }[/math] – either 0 or 1. It can be thought of as the simply-connected symmetric L-group [math]\displaystyle{ L^{4k+1}, }[/math] and thus analogous to the other invariants from L-theory: the signature, a 4k-dimensional invariant (either symmetric or quadratic, [math]\displaystyle{ L^{4k} \cong L_{4k} }[/math]), and the Kervaire invariant, a (4k+2)-dimensional quadratic invariant [math]\displaystyle{ L_{4k+2}. }[/math]
It is named for Swiss mathematician Georges de Rham, and used in surgery theory.[1][2]
Definition
The de Rham invariant of a (4k+1)-dimensional manifold can be defined in various equivalent ways:[3]
- the rank of the 2-torsion in [math]\displaystyle{ H_{2k}(M), }[/math] as an integer mod 2;
- the Stiefel–Whitney number [math]\displaystyle{ w_2w_{4k-1} }[/math];
- the (squared) Wu number, [math]\displaystyle{ v_{2k}Sq^1v_{2k}, }[/math] where [math]\displaystyle{ v_{2k} \in H^{2k}(M;Z_2) }[/math] is the Wu class of the normal bundle of [math]\displaystyle{ M }[/math] and [math]\displaystyle{ Sq^1 }[/math] is the Steenrod square ; formally, as with all characteristic numbers, this is evaluated on the fundamental class: [math]\displaystyle{ (v_{2k}Sq^1v_{2k},[M]) }[/math];
- in terms of a semicharacteristic.
References
- ↑ Morgan, John W; Sullivan, Dennis P. (1974), "The transversality characteristic class and linking cycles in surgery theory", Annals of Mathematics, 2 99: 463–544, doi:10.2307/1971060
- ↑ John W. Morgan, A product formula for surgery obstructions, 1978
- ↑ (Lusztig Milnor)
- "Semi-characteristics and cobordism", Topology 8: 357–360, 1969, doi:10.1016/0040-9383(69)90021-4
- Chess, Daniel, A Poincaré-Hopf type theorem for the de Rham invariant, 1980
Original source: https://en.wikipedia.org/wiki/De Rham invariant.
Read more |