Denisyuk polynomials
From HandWiki
In mathematics, Denisyuk polynomials Den(x) or Mn(x) are generalizations of the Laguerre polynomials introduced by (Denisyuk 1954) given by the generating function[1] [math]\displaystyle{ \displaystyle \sum_{n=0}^\infty t^nM_n(x)=\frac 1{1+t}\exp-\frac{xt}{1-t}. }[/math]
Notes
- ↑ Boas & Buck (1958), p. 41.
References
- Boas, Ralph P.; Buck, R. Creighton (1958), Polynomial expansions of analytic functions, Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge., 19, Berlin, New York: Springer-Verlag, https://books.google.com/books?id=eihMuwkh4DsC
- Denisyuk, I. M. (1954), "Some integrals, matrices and approximations connected with polynomials analogous to the Laguerre polynomials" (in Ukrainian), Akademiya Nauk Ukrainskoui SSR. Doklady. Seriya A. Fiziko-Matematicheskie i Tekhnicheskie Nauki 1954: 239–242, ISSN 0201-8446
Original source: https://en.wikipedia.org/wiki/Denisyuk polynomials.
Read more |