Laguerre polynomials

From HandWiki
Short description: Sequence of differential equation solutions
Complex color plot of L−1/9(z4) from −2−2i to 2+2i
Complex color plot of L−1/9(z4) from −2−2i to 2+2i

In mathematics, the Laguerre polynomials, named after Edmond Laguerre (1834–1886), are nontrivial solutions of Laguerre's differential equation: xy+(1x)y+ny=0, y=y(x) which is a second-order linear differential equation. This equation has nonsingular solutions only if n is a non-negative integer.

Sometimes the name Laguerre polynomials is used for solutions of xy+(α+1x)y+ny=0. where n is still a non-negative integer. Then they are also named generalized Laguerre polynomials, as will be done here (alternatively associated Laguerre polynomials or, rarely, Sonine polynomials, after their inventor[1] Nikolay Yakovlevich Sonin).

More generally, a Laguerre function is a solution when n is not necessarily a non-negative integer.

The Laguerre polynomials are also used for Gauss–Laguerre quadrature to numerically compute integrals of the form 0f(x)exdx.

These polynomials, usually denoted L0L1, ..., are a polynomial sequence which may be defined by the Rodrigues formula,

Ln(x)=exn!dndxn(exxn)=1n!(ddx1)nxn, reducing to the closed form of a following section.

They are orthogonal polynomials with respect to an inner product f,g=0f(x)g(x)exdx.

The rook polynomials in combinatorics are more or less the same as Laguerre polynomials, up to elementary changes of variables. Further see the Tricomi–Carlitz polynomials.

The Laguerre polynomials arise in quantum mechanics, in the radial part of the solution of the Schrödinger equation for a one-electron atom. They also describe the static Wigner functions of oscillator systems in quantum mechanics in phase space. They further enter in the quantum mechanics of the Morse potential and of the 3D isotropic harmonic oscillator.

Physicists sometimes use a definition for the Laguerre polynomials that is larger by a factor of n! than the definition used here. (Likewise, some physicists may use somewhat different definitions of the so-called associated Laguerre polynomials.)

Recursive definition, closed form, and generating function

One can also define the Laguerre polynomials recursively, defining the first two polynomials as L0(x)=1 L1(x)=1x and then using the following recurrence relation for any k ≥ 1: Lk+1(x)=(2k+1x)Lk(x)kLk1(x)k+1. Furthermore, xL'n(x)=nLn(x)nLn1(x).

In solution of some boundary value problems, the characteristic values can be useful: Lk(0)=1,Lk(0)=k.

The closed form is Ln(x)=k=0n(nk)(1)kk!xk.

The generating function for them likewise follows, n=0tnLn(x)=11tetx/(1t).The operator form is Ln(x)=1n!exdndxn(xnex)

Polynomials of negative index can be expressed using the ones with positive index: Ln(x)=exLn1(x).

A table of the Laguerre polynomials
n Ln(x)
0 1
1 x+1
2 12(x24x+2)
3 16(x3+9x218x+6)
4 124(x416x3+72x296x+24)
5 1120(x5+25x4200x3+600x2600x+120)
6 1720(x636x5+450x42400x3+5400x24320x+720)
7 15040(x7+49x6882x5+7350x429400x3+52920x235280x+5040)
8 140320(x864x7+1568x618816x5+117600x4376320x3+564480x2322560x+40320)
9 1362880(x9+81x82592x7+42336x6381024x5+1905120x45080320x3+6531840x23265920x+362880)
10 13628800(x10100x9+4050x886400x7+1058400x67620480x5+31752000x472576000x3+81648000x236288000x+3628800)
n 1n!((x)n+n2(x)n1++(nk)2k!(x)nk++n(n!)(x)+n!)
The first six Laguerre polynomials.

Generalized Laguerre polynomials

For arbitrary real α the polynomial solutions of the differential equation[2] xy+(α+1x)y+ny=0 are called generalized Laguerre polynomials, or associated Laguerre polynomials.

One can also define the generalized Laguerre polynomials recursively, defining the first two polynomials as L0(α)(x)=1 L1(α)(x)=1+αx

and then using the following recurrence relation for any k ≥ 1: Lk+1(α)(x)=(2k+1+αx)Lk(α)(x)(k+α)Lk1(α)(x)k+1.

The simple Laguerre polynomials are the special case α = 0 of the generalized Laguerre polynomials: Ln(0)(x)=Ln(x).

The Rodrigues formula for them is Ln(α)(x)=xαexn!dndxn(exxn+α)=xαn!(ddx1)nxn+α.

The generating function for them is n=0tnLn(α)(x)=1(1t)α+1etx/(1t).

The first few generalized Laguerre polynomials, Ln(k)(x)

Properties

  • Laguerre functions are defined by confluent hypergeometric functions and Kummer's transformation as[3] Ln(α)(x):=(n+αn)M(n,α+1,x). where (n+αn) is a generalized binomial coefficient. When n is an integer the function reduces to a polynomial of degree n. It has the alternative expression[4] Ln(α)(x)=(1)nn!U(n,α+1,x) in terms of Kummer's function of the second kind.
  • The closed form for these generalized Laguerre polynomials of degree n is[5] Ln(α)(x)=i=0n(1)i(n+αni)xii! derived by applying Leibniz's theorem for differentiation of a product to Rodrigues' formula.
  • The first few generalized Laguerre polynomials are:
n Ln(α)(x)
0 1
1 x+α+1
2 12(x22(α+2)x+(α+1)(α+2))
3 16(x3+3(α+3)x23(α+2)(α+3)x+(α+1)(α+2)(α+3))
4 124(x44(α+4)x3+6(α+3)(α+4)x24(α+2)(α+4)x+(α+1)(α+4))
5 1120(x5+5(α+5)x410(α+4)(α+5)x3+10(α+3)(α+5)x25(α+2)(α+5)x+(α+1)(α+5))
6 1720(x66(α+6)x5+15(α+5)(α+6)x420(α+4)(α+6)x3+15(α+3)(α+6)x26(α+2)(α+6)x+(α+1)(α+6))
7 15040(x7+7(α+7)x621(α+6)(α+7)x5+35(α+5)(α+7)x435(α+4)(α+7)x3+21(α+3)(α+7)x27(α+2)(α+7)x+(α+1)(α+7))
8 140320(x88(α+8)x7+28(α+7)(α+8)x656(α+6)(α+8)x5+70(α+5)(α+8)x456(α+4)(α+8)x3+28(α+3)(α+8)x28(α+2)(α+8)x+(α+1)(α+8))
9 1362880(x9+9(α+9)x836(α+8)(α+9)x7+84(α+7)(α+9)x6126(α+6)(α+9)x5+126(α+5)(α+9)x484(α+4)(α+9)x3+36(α+3)(α+9)x29(α+2)(α+9)x+(α+1)(α+9))
10 13628800(x1010(α+10)x9+45(α+9)(α+10)x8120(α+8)(α+10)x7+210(α+7)(α+10)x6252(α+6)(α+10)x5+210(α+5)(α+10)x4120(α+4)(α+10)x3+45(α+3)(α+10)x210(α+2)(α+10)x+(α+1)(α+10))
  • The coefficient of the leading term is (−1)n/n!;
  • The constant term, which is the value at 0, is Ln(α)(0)=(n+αn)=Γ(n+α+1)n!Γ(α+1);
  • The discriminant is[6]Disc(Ln(α))=j=1njj2n+2(j+α)j1

As a contour integral

Given the generating function specified above, the polynomials may be expressed in terms of a contour integral Ln(α)(x)=12πiCext/(1t)(1t)α+1tn+1dt, where the contour circles the origin once in a counterclockwise direction without enclosing the essential singularity at 1

Recurrence relations

The addition formula for Laguerre polynomials:[7] Ln(α1++αr+r1)(x1++xr)=m1++mr=nLm1(α1)(x1)Lmr(αr)(xr).Laguerre's polynomials satisfy the recurrence relations Ln(α)(x)=i=0nLni(α+i)(y)(yx)ii!, in particular Ln(α+1)(x)=i=0nLi(α)(x) and Ln(α)(x)=i=0n(αβ+ni1ni)Li(β)(x), or Ln(α)(x)=i=0n(αβ+nni)Li(βi)(x); moreover Ln(α)(x)j=0Δ1(n+αnj)(1)jxjj!=(1)ΔxΔ(Δ1)!i=0nΔ(n+αnΔi)(ni)(ni)Li(α+Δ)(x)=(1)ΔxΔ(Δ1)!i=0nΔ(n+αi1nΔi)(ni)(ni)Li(n+α+Δi)(x)

They can be used to derive the four 3-point-rules Ln(α)(x)=Ln(α+1)(x)Ln1(α+1)(x)=j=0k(kj)(1)jLnj(α+k)(x),nLn(α)(x)=(n+α)Ln1(α)(x)xLn1(α+1)(x),or xkk!Ln(α)(x)=i=0k(1)i(n+ii)(n+αki)Ln+i(αk)(x),nLn(α+1)(x)=(nx)Ln1(α+1)(x)+(n+α)Ln1(α)(x)xLn(α+1)(x)=(n+α)Ln1(α)(x)(nx)Ln(α)(x);

combined they give this additional, useful recurrence relationsLn(α)(x)=(2+α1xn)Ln1(α)(x)(1+α1n)Ln2(α)(x)=α+1xnLn1(α+1)(x)xnLn2(α+2)(x)

Since Ln(α)(x) is a monic polynomial of degree n in α, there is the partial fraction decomposition n!Ln(α)(x)(α+1)n=1j=1n(1)jjα+j(nj)Ln(j)(x)=1j=1nxjα+jLnj(j)(x)(j1)!=1xi=1nLni(α)(x)Li1(α+1)(x)α+i. The second equality follows by the following identity, valid for integer i and n and immediate from the expression of Ln(α)(x) in terms of Charlier polynomials: (x)ii!Ln(in)(x)=(x)nn!Li(ni)(x). For the third equality apply the fourth and fifth identities of this section.

Derivatives

Differentiating the power series representation of a generalized Laguerre polynomial k times leads to dkdxkLn(α)(x)={(1)kLnk(α+k)(x)if kn,0otherwise.

This points to a special case (α = 0) of the formula above: for integer α = k the generalized polynomial may be written Ln(k)(x)=(1)kdkLn+k(x)dxk, the shift by k sometimes causing confusion with the usual parenthesis notation for a derivative.

Moreover, the following equation holds: 1k!dkdxkxαLn(α)(x)=(n+αk)xαkLn(αk)(x), which generalizes with Cauchy's formula to Ln(α)(x)=(αα)(α+nαα)0xtα(xt)αα1xαLn(α)(t)dt.

The derivative with respect to the second variable α has the form,[8] ddαLn(α)(x)=i=0n1Li(α)(x)ni. The generalized Laguerre polynomials obey the differential equation xLn(α)(x)+(α+1x)Ln(α)(x)+nLn(α)(x)=0, which may be compared with the equation obeyed by the kth derivative of the ordinary Laguerre polynomial,

xLn[k](x)+(k+1x)Ln[k](x)+(nk)Ln[k](x)=0, where Ln[k](x)dkLn(x)dxk for this equation only.

In Sturm–Liouville form the differential equation is

(xα+1exLn(α)(x))=nxαexLn(α)(x),

which shows that L(α)n is an eigenvector for the eigenvalue n.

Orthogonality

The generalized Laguerre polynomials are orthogonal over [0, ∞) with respect to the measure with weighting function xα ex:[9]

0xαexLn(α)(x)Lm(α)(x)dx=Γ(n+α+1)n!δn,m,

which follows from

0xα1exLn(α)(x)dx=(αα+nn)Γ(α).

If Γ(x,α+1,1) denotes the gamma distribution then the orthogonality relation can be written as

0Ln(α)(x)Lm(α)(x)Γ(x,α+1,1)dx=(n+αn)δn,m.

The associated, symmetric kernel polynomial has the representations (Christoffel–Darboux formula)

Kn(α)(x,y):=1Γ(α+1)i=0nLi(α)(x)Li(α)(y)(α+ii)=1Γ(α+1)Ln(α)(x)Ln+1(α)(y)Ln+1(α)(x)Ln(α)(y)xyn+1(n+αn)=1Γ(α+1)i=0nxii!Lni(α+i)(x)Lni(α+i+1)(y)(α+nn)(ni);

recursively

Kn(α)(x,y)=yα+1Kn1(α+1)(x,y)+1Γ(α+1)Ln(α+1)(x)Ln(α)(y)(α+nn).

Moreover,[clarification needed Limit as n goes to infinity?]

yαeyKn(α)(,y)δ(y).

Turán's inequalities can be derived here, which is Ln(α)(x)2Ln1(α)(x)Ln+1(α)(x)=k=0n1(α+n1nk)n(nk)Lk(α1)(x)2>0.

The following integral is needed in the quantum mechanical treatment of the hydrogen atom,

0xα+1ex[Ln(α)(x)]2dx=(n+α)!n!(2n+α+1).

Series expansions

Let a function have the (formal) series expansion f(x)=i=0fi(α)Li(α)(x).

Then fi(α)=0Li(α)(x)(i+αi)xαexΓ(α+1)f(x)dx.

The series converges in the associated Hilbert space L2[0, ∞) if and only if

fL22:=0xαexΓ(α+1)|f(x)|2dx=i=0(i+αi)|fi(α)|2<.

Further examples of expansions

Monomials are represented as xnn!=i=0n(1)i(n+αni)Li(α)(x), while binomials have the parametrization (n+xn)=i=0nαii!Lni(x+i)(α).

This leads directly to eγx=i=0γi(1+γ)i+α+1Li(α)(x)convergent iff (γ)>12 for the exponential function. The incomplete gamma function has the representation Γ(α,x)=xαexi=0Li(α)(x)1+i((α)>1,x>0).

Asymptotics

In terms of elementary functions

For any fixed positive integer M, fixed real number α, fixed and bounded interval [c,d](0,+), uniformly for x[c,d], at n:Ln(α)(x)=n12α14e12xπ12x12α+14(cosθn(α)(x)(m=0M1am(x)n12m+O(1n12M))+sinθn(α)(x)(m=1M1bm(x)n12m+O(1n12M)))where θn(α)(x):=2(nx)12(12α+14)π.and a0,b1,a1,b2, are functions depending on α,x but not n, and regular for x>0. The first few ones are:a0(x)=1a1(x)=0b1(x)=148x12(4x224(α+1)x+312α2)This is Perron's formula.[10][11]: 78  There is also a generalization for x[0,).[12] Fejér's formula is a special case of Perron's formula with M=1.[13][12][14]

In terms of Bessel functions

The Mehler–Heine formula states:

limnnαLn(α)(z24n)=(z2)αJα(z),

where Jα is a Bessel function of the first kind.

See also: [10].

In terms of Airy functions

Let ν=4n+2α+2. Let Ai be the Airy function. Let α be arbitrary and real, ϵ and ω be positive and fixed.

The Plancherel–Rotach asymptotics formulas:[15][10]

  • for x=νcos2φ and ϵφπ2ϵn1/2, uniformly at n:
ex/2Ln(α)(x)=(1)n(πsinφ)1/2xα/21/4nα/21/4{sin[(n+α+12)(sin2φ2φ)+3π/4]+(nx)1/2𝒪(1)}
  • for x=νcosh2φ and ϵφω, uniformly at n:
ex/2Ln(α)(x)=12(1)n(πsinhφ)1/2xα/21/4nα/21/4exp[(n+α+12)(2φsinh2φ)]{1+𝒪(n1)}
  • for x=ν2(2n/3)1/3t and t complex and bounded, uniformly at n:
ex/2Ln(α)(x)=(1)nπ12α1/331/3n1/3{πAi(31/3t)+𝒪(n2/3)}

See DLMF for higher-order terms.[10]

Zeroes

Notation

jα,m is the m-th positive zero of the Bessel function Jα(x).

am is the m-th zero of the Airy function Ai(x), in descending order: 0>a1>a2>.

ν=4n+2α+2.

If α>1, then Ln(α) has n real roots. Thus in this section we assume α>1 by default.

x1<<xn are the real roots of Ln(α).

Note that ((1)niLni(α))i=0n is a Sturm chain.

Inequalities

For α>1, we have these bounds:[16][17][6][18]

  • x1<(α+1)(α+2)n+α+1
  • x1<(α+1)(α+3)2n+α+1
  • x1<(α+1)(α+2)(α+4)(2n+α+1)(α+1)2(α+2)+n(5α+11)(n+α+1)
  • xn2n+α1+2(n2)(n+α1) when n2
  • xn>4n+α162n
  • xn>3n4
  • xn>2n+α1
  • xn>2n+α2+n22n+αn+2
  • (n+2)x1(n1n2+(n+2)(α+1))21(n+2)xn(n1+n2+(n+2)(α+1))21
  • x1>12ν31+4(n1)(n+α1)xn<12ν3+1+4(n1)(n+α1)


For fixed k=1,,n,[16][6][17]νxk>jα,k2xk<jα,k2ν/2+(ν/2)2jα,k2 if ν/2>jα,kxk<[ν1/2+21/3ν1/6ank+1]2 if |α|1/4xk<ν+223akν13+223ak2ν13For fixed k, we have limnνxk=jα,k2, so the first inequality is sharp.

See also.[19]

Electrostatics

The zeroes satisfy the Stieltjes relations:[20][21]1jn,ij1xixj=12(1α+1xi)1jn1xj=nα+11jn,ij1(xixj)2=(α+1)(α+5)12xi2+2n+α+16xi1121jn,ij1(xixj)3=(α+1)(α+3)8xi3+2n+α+18xi2The first relation can be interpreted physically. Fix an electric particle at origin with charge +α+12, and produce a constant electric field of strength 12. Then, place n electric particles with charge +1. The first relation states that the zeroes of Ln(α) are the equilibrium positions of the particles.

As the zeroes specify the polynomial up to scaling, this provides an alternative way to uniquely characterize the Laguerre polynomials.

The zeroes also satisfy[22]i=1n1xxi=k=0Sk+1xk,Sk:=i=1nxikwhich allows the following boundSm1/m<x1<Sm/Sm+1,m=1,2,

Limit distribution

Let Fn(t):=1n#{i:xit} be the cumulative distribution function for the roots, then we have the limit law[23]limnFn(4nt)=2π0t1ssdst(0,1]which can be interpreted as the limit distribution of the Wishart ensemble spectrum.

For fixed α>1 and fixed k, as n,[17]xn+1k=ν+22/3akν1/3+1524/3ak2ν1/3+(1135α212175ak3)ν1+(161575ak+927875ak4)22/3ν5/3(151523031875ak5+1088121275ak2)21/3ν7/3+𝒪(ν3),

For α(1,0),[22]x1=α+1n+n12(α+1n)2n2+3n412(α+1n)3+7n3+6n2+23n36144(α+1n)4293n4+210n3+235n2+990n17288640(α+1n)5+

In quantum mechanics

In quantum mechanics the Schrödinger equation for the hydrogen-like atom is exactly solvable by separation of variables in spherical coordinates. The radial part of the wave function is a (generalized) Laguerre polynomial.[24]

Vibronic transitions in the Franck-Condon approximation can also be described using Laguerre polynomials.[25]

Multiplication theorems

Erdélyi gives the following two multiplication theorems [26]

tn+1+αe(1t)zLn(α)(zt)=k=n(kn)(11t)knLk(α)(z),e(1t)zLn(α)(zt)=k=0(1t)kzkk!Ln(α+k)(z).

Relation to Hermite polynomials

The generalized Laguerre polynomials are related to the Hermite polynomials: H2n(x)=(1)n22nn!Ln(1/2)(x2)H2n+1(x)=(1)n22n+1n!xLn(1/2)(x2) where the Hn(x) are the Hermite polynomials based on the weighting function exp(−x2), the so-called "physicist's version."

Because of this, the generalized Laguerre polynomials arise in the treatment of the quantum harmonic oscillator.

Applying the addition formula,(1)n22nn!Ln(r21)(z12++zr2)=m1++mr=ni=1rH2mi(zi).

Relation to hypergeometric functions

The Laguerre polynomials may be defined in terms of hypergeometric functions, specifically the confluent hypergeometric functions, as Ln(α)(x)=(n+αn)M(n,α+1,x)=(α+1)nn!1F1(n,α+1,x) where (a)n is the Pochhammer symbol (which in this case represents the rising factorial).

Hardy–Hille formula

The generalized Laguerre polynomials satisfy the HardyHille formula[27][28] n=0n!Γ(α+1)Γ(n+α+1)Ln(α)(x)Ln(α)(y)tn=1(1t)α+1e(x+y)t/(1t)0F1(;α+1;xyt(1t)2), where the series on the left converges for α>1 and |t|<1. Using the identity 0F1(;α+1;z)=Γ(α+1)zα/2Iα(2z), (see generalized hypergeometric function), this can also be written as n=0n!Γ(1+α+n)Ln(α)(x)Ln(α)(y)tn=1(xyt)α/2(1t)e(x+y)t/(1t)Iα(2xyt1t).where Iα denotes the modified Bessel function of the first kind, defined asIα(z)=k=01k!Γ(k+α+1)(z2)2k+αThis formula is a generalization of the Mehler kernel for Hermite polynomials, which can be recovered from it by setting the Hermite polynomials as a special case of the associated Laguerre polynomials.

Substitute tt/y and take the y limit, we obtain [29]n=0tnΓ(n+1+α)Ln(α)(x)=et(xt)α/2Iα(2xt).The formula is named after G. H. Hardy and Einar Hille.[30][31]

Physics convention

The generalized Laguerre polynomials are used to describe the quantum wavefunction for hydrogen atom orbitals.[32][33][34] The convention used throughout this article expresses the generalized Laguerre polynomials as [35]

Ln(α)(x)=Γ(α+n+1)Γ(α+1)n!1F1(n;α+1;x),

where 1F1(a;b;x) is the confluent hypergeometric function. In the physics literature,[34] the generalized Laguerre polynomials are instead defined as

L¯n(α)(x)=[Γ(α+n+1)]2Γ(α+1)n!1F1(n;α+1;x).

The physics version is related to the standard version by

L¯n(α)(x)=(n+α)!Ln(α)(x).

There is yet another, albeit less frequently used, convention in the physics literature [36][37][38]

L~n(α)(x)=(1)αL¯nα(α).

Umbral calculus convention

Generalized Laguerre polynomials are linked to Umbral calculus by being Sheffer sequences for D/(DI) when multiplied by n!. In Umbral Calculus convention,[39] the default Laguerre polynomials are defined to ben(x)=n!Ln(1)(x)=k=0nL(n,k)(x)kwhere L(n,k)=(n1k1)n!k! are the signless Lah numbers. (n(x))n is a sequence of polynomials of binomial type, ie they satisfyn(x+y)=k=0n(nk)k(x)nk(y)

See also

Notes

  1. N. Sonine (1880). "Recherches sur les fonctions cylindriques et le développement des fonctions continues en séries". Math. Ann. 16 (1): 1–80. doi:10.1007/BF01459227. http://www.digizeitschriften.de/dms/img/?PPN=PPN235181684_0016&DMDID=dmdlog8. 
  2. A&S p. 781
  3. A&S p. 509
  4. A&S p. 510
  5. A&S p. 775
  6. 6.0 6.1 6.2 "DLMF: §18.16 Zeros ‣ Classical Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials". https://dlmf.nist.gov/18.16. 
  7. "DLMF: §18.18 Sums ‣ Classical Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials". https://dlmf.nist.gov/18.18. 
  8. Koepf, Wolfram (1997). "Identities for families of orthogonal polynomials and special functions". Integral Transforms and Special Functions 5 (1–2): 69–102. doi:10.1080/10652469708819127. 
  9. "Associated Laguerre Polynomial". http://mathworld.wolfram.com/AssociatedLaguerrePolynomial.html. 
  10. 10.0 10.1 10.2 10.3 "DLMF: §18.15 Asymptotic Approximations ‣ Classical Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials". https://dlmf.nist.gov/18.15. 
  11. Perron, Oskar (1921-01-01) (in de). Über das Verhalten einer ausgearteten hypergeometrischen Reihe bei unbegrenztem Wachstum eines Parameters.. 1921. pp. 63–78. doi:10.1515/crll.1921.151.63. ISSN 1435-5345. https://www.degruyterbrill.com/document/doi/10.1515/crll.1921.151.63/html. 
  12. 12.0 12.1 Szegő, p. 198.
  13. Turán, Pál (1970), "Asymptotikus Értékek Meghatározásáról" (in de), Leopold Fejér Gesammelte Arbeiten I (Basel: Birkhäuser Basel): pp. 445–503, doi:10.1007/978-3-0348-5902-8_31, ISBN 978-3-0348-5903-5, http://link.springer.com/10.1007/978-3-0348-5902-8_31, retrieved 2025-07-07 
  14. D. Borwein, J. M. Borwein, R. E. Crandall, "Effective Laguerre asymptotics", SIAM J. Numer. Anal., vol. 46 (2008), no. 6, pp. 3285–3312 doi:10.1137/07068031X
  15. Szegő, pp. 200–201
  16. 16.0 16.1 Driver, K.; Jordaan, K. (January 2013). "Inequalities for Extreme Zeros of Some Classical Orthogonal andq-orthogonal Polynomials" (in en). Mathematical Modelling of Natural Phenomena 8 (1): 48–59. doi:10.1051/mmnp/20138103. ISSN 0973-5348. https://www.cambridge.org/core/journals/mathematical-modelling-of-natural-phenomena/article/abs/inequalities-for-extreme-zeros-of-some-classical-orthogonal-andqorthogonal-polynomials/23A22C923D65F1DAAE2DF1D2D7EBE8B9. 
  17. 17.0 17.1 17.2 Gatteschi, Luigi (2002-07-01). "Asymptotics and bounds for the zeros of Laguerre polynomials: a survey". Journal of Computational and Applied Mathematics. Selected papers of the Int. Symp. on Applied Mathematics, August 2000, Dalian, China 144 (1): 7–27. doi:10.1016/S0377-0427(01)00549-0. ISSN 0377-0427. https://www.sciencedirect.com/science/article/pii/S0377042701005490. 
  18. Dimitrov, Dimitar K.; Rafaeli, Fernando R. (2009-12-01). "Monotonicity of zeros of Laguerre polynomials". Journal of Computational and Applied Mathematics. 9th OPSFA Conference 233 (3): 699–702. doi:10.1016/j.cam.2009.02.038. ISSN 0377-0427. https://www.sciencedirect.com/science/article/pii/S0377042709001149. 
  19. (Szegő 1975)
  20. Marcellán, F.; Martínez-Finkelshtein, A.; Martínez-González, P. (2007-10-15). "Electrostatic models for zeros of polynomials: Old, new, and some open problems". Journal of Computational and Applied Mathematics. Proceedings of The Conference in Honour of Dr. Nico Temme on the Occasion of his 65th birthday 207 (2): 258–272. doi:10.1016/j.cam.2006.10.020. ISSN 0377-0427. https://www.sciencedirect.com/science/article/pii/S037704270600611X. 
  21. (Szegő 1975)
  22. 22.0 22.1 Gupta, Dharma P.; Muldoon, Martin E. (2007). "Inequalities for the smallest zeros of Laguerre polynomials and their -analogues.". JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only] 8 (1): Paper No. 24, 7 p., electronic only–Paper No. 24, 7 p., electronic only. ISSN 1443-5756. https://eudml.org/doc/128801. 
  23. Gawronski, Wolfgang (1987-07-01). "On the asymptotic distribution of the zeros of Hermite, Laguerre, and Jonquière polynomials". Journal of Approximation Theory 50 (3): 214–231. doi:10.1016/0021-9045(87)90020-7. ISSN 0021-9045. https://www.sciencedirect.com/science/article/pii/0021904587900207. 
  24. Ratner, Schatz, Mark A., George C. (2001). Quantum Mechanics in Chemistry. 0-13-895491-7: Prentice Hall. pp. 90–91. 
  25. Jong, Mathijs de; Seijo, Luis; Meijerink, Andries; Rabouw, Freddy T. (2015-06-24). "Resolving the ambiguity in the relation between Stokes shift and Huang–Rhys parameter" (in en). Physical Chemistry Chemical Physics 17 (26): 16959–16969. doi:10.1039/C5CP02093J. ISSN 1463-9084. PMID 26062123. Bibcode2015PCCP...1716959D. https://pubs.rsc.org/en/content/articlelanding/2015/cp/c5cp02093j. 
  26. C. Truesdell, "On the Addition and Multiplication Theorems for the Special Functions", Proceedings of the National Academy of Sciences, Mathematics, (1950) pp. 752–757.
  27. Szegő, p. 102.
  28. Al-Salam, W. A. (1964-03-01). "Operational representations for the Laguerre and other polynomials". Duke Mathematical Journal 31 (1). doi:10.1215/S0012-7094-64-03113-8. ISSN 0012-7094. https://projecteuclid.org/journals/duke-mathematical-journal/volume-31/issue-1/Operational-representations-for-the-Laguerre-and-other/10.1215/S0012-7094-64-03113-8.full. 
  29. Szegő, page 102, Equation (5.1.16)
  30. G. H. Hardy, “Summation of a series of polynomials of Laguerre,” J. London Math. Soc., v. 7, 1932, pp. 138–139; addendum, 192.
  31. E. Hille, “On Laguerre’s series. I, II, III,” Proc. Nat. Acad. Sci. U.S.A., v. 12, 1926, pp. 261–269; 348–352.
  32. Griffiths, David J. (2005). Introduction to quantum mechanics (2nd ed.). Upper Saddle River, NJ: Pearson Prentice Hall. ISBN 0131118927. 
  33. Sakurai, J. J. (2011). Modern quantum mechanics (2nd ed.). Boston: Addison-Wesley. ISBN 978-0805382914. 
  34. 34.0 34.1 Merzbacher, Eugen (1998). Quantum mechanics (3rd ed.). New York: Wiley. ISBN 0471887021. 
  35. Abramowitz, Milton (1965). Handbook of mathematical functions, with formulas, graphs, and mathematical tables. New York: Dover Publications. ISBN 978-0-486-61272-0. 
  36. Schiff, Leonard I. (1968). Quantum mechanics (3d ed.). New York: McGraw-Hill. ISBN 0070856435. 
  37. Messiah, Albert (2014). Quantum Mechanics.. Dover Publications. ISBN 9780486784557. 
  38. Boas, Mary L. (2006). Mathematical methods in the physical sciences (3rd ed.). Hoboken, NJ: Wiley. ISBN 9780471198260. 
  39. Rota, Gian-Carlo; Kahaner, D; Odlyzko, A (1973-06-01). "On the foundations of combinatorial theory. VIII. Finite operator calculus" (in en). Journal of Mathematical Analysis and Applications 42 (3): 684–760. doi:10.1016/0022-247X(73)90172-8. ISSN 0022-247X. 

References