Dialgebra
From HandWiki
In abstract algebra, a dialgebra is the generalization of both algebra and coalgebra. The notion was originally introduced by Lambek as "subequalizers",[1][2] and named as dialgebras by Tatsuya Hagino.[3][2] Many algebraic notions have previously been generalized to dialgebras.[4] Dialgebra also attempts to obtain Lie algebras from associated algebras.[5]
See also
References
- ↑ Lambek, Joachim (1970). "Subequalizers". Canadian Mathematical Bulletin 13 (3): 337–349. doi:10.4153/CMB-1970-065-6.
- ↑ 2.0 2.1 Backhouse, Roland; Hoogendijk, Paul (1999). "Final dialgebras: from categories to allegories". RAIRO Theoretical Informatics and Applications 33 (4–5): 401–426. doi:10.1051/ita:1999126. https://www.numdam.org/article/ITA_1999__33_4-5_401_0.pdf.
- ↑ Hagino, Tatsuya (1987). "Category Theory and Computer Science, Edinburgh, UK, September 7–9, 1987, Proceedings". in Pitt, David H.; Poigné, Axel; Rydeheard, David E.. 283. Springer. pp. 140–157. doi:10.1007/3-540-18508-9_24. ISBN 978-3-540-18508-6.
- ↑ Poll, Erik; Zwanenburg, Jan (2001). "Coalgebraic Methods in Computer Science, CMCS 2001, a Satellite Event of ETAPS 2001, Genova, Italy, April 6–7, 2001". in Corradini, Andrea; Lenisa, Marina; Montanari, Ugo. 44 (1 ed.). Elsevier. pp. 289–307. doi:10.1016/S1571-0661(04)80915-0.
- ↑ Loday, Jean-Louis (2001). "Dialgebras". in Loday, Jean-Louis; Chapoton, Frédéric; Frabetti, Alessandra et al.. Dialgebras and Related Operads. Lecture Notes in Mathematics. 1763. Springer. pp. 7–66. doi:10.1007/3-540-45328-8_2. ISBN 3-540-42194-7.
Further reading
