Discrete-stable distribution

From HandWiki

The discrete-stable distributions[1] are a class of probability distributions with the property that the sum of several random variables from such a distribution under appropriate scaling is distributed according to the same family. They are the discrete analogue of the continuous-stable distributions.

The discrete-stable distributions have been used in numerous fields, in particular in scale-free networks such as the internet, social networks[2] or even semantic networks.[3]

Both the discrete and continuous classes of stable distribution have properties such as infinite divisibility, power law tails and unimodality.

The most well-known discrete stable distribution is the Poisson distribution which is a special case.[4] It is the only discrete-stable distribution for which the mean and all higher-order moments are finite.[dubious ]

Definition

The discrete-stable distributions are defined[5] through their probability-generating function

[math]\displaystyle{ G(s| \nu,a)=\sum_{n=0}^\infty P(N| \nu,a)(1-s)^N = \exp(-a s^\nu). }[/math]

In the above, [math]\displaystyle{ a\gt 0 }[/math] is a scale parameter and [math]\displaystyle{ 0\lt \nu\le1 }[/math] describes the power-law behaviour such that when [math]\displaystyle{ 0\lt \nu\lt 1 }[/math],

[math]\displaystyle{ \lim_{N \to \infty}P(N|\nu,a) \sim \frac{1}{N^{\nu+1}}. }[/math]

When [math]\displaystyle{ \nu=1 }[/math] the distribution becomes the familiar Poisson distribution with mean [math]\displaystyle{ a }[/math].

The characteristic function of a discrete-stable distribution has the form:[6]

[math]\displaystyle{ \varphi(t; a, \nu) = \exp \left[a \left( e^{it} - 1 \right)^\nu \right] }[/math], with [math]\displaystyle{ a\gt 0 }[/math] and [math]\displaystyle{ 0\lt \nu\le1 }[/math].

Again, when [math]\displaystyle{ \nu=1 }[/math] the distribution becomes the Poisson distribution with mean [math]\displaystyle{ a }[/math].

The original distribution is recovered through repeated differentiation of the generating function:

[math]\displaystyle{ P(N|\nu,a)= \left.\frac{(-1)^N}{N!}\frac{d^NG(s|\nu,a)}{ds^N}\right|_{s=1}. }[/math]

A closed-form expression using elementary functions for the probability distribution of the discrete-stable distributions is not known except for in the Poisson case, in which

[math]\displaystyle{ \!P(N| \nu=1, a)= \frac{a^N e^{-a}}{N!}. }[/math]

Expressions do exist, however, using special functions for the case [math]\displaystyle{ \nu=1/2 }[/math][7] (in terms of Bessel functions) and [math]\displaystyle{ \nu=1/3 }[/math][8] (in terms of hypergeometric functions).

As compound probability distributions

The entire class of discrete-stable distributions can be formed as Poisson compound probability distributions where the mean, [math]\displaystyle{ \lambda }[/math], of a Poisson distribution is defined as a random variable with a probability density function (PDF). When the PDF of the mean is a one-sided continuous-stable distribution with stability parameter [math]\displaystyle{ 0 \lt \alpha \lt 1 }[/math] and scale parameter [math]\displaystyle{ c }[/math] the resultant distribution is[9] discrete-stable with index [math]\displaystyle{ \nu = \alpha }[/math] and scale parameter [math]\displaystyle{ a = c \sec( \alpha \pi / 2) }[/math].

Formally, this is written:

[math]\displaystyle{ P(N| \alpha, c \sec( \alpha \pi / 2)) = \int_0^\infty P(N| 1, \lambda)p(\lambda; \alpha, 1, c, 0) \, d\lambda }[/math]

where [math]\displaystyle{ p(x; \alpha, 1, c, 0) }[/math] is the pdf of a one-sided continuous-stable distribution with symmetry paramètre [math]\displaystyle{ \beta=1 }[/math] and location parameter [math]\displaystyle{ \mu = 0 }[/math].

A more general result[8] states that forming a compound distribution from any discrete-stable distribution with index [math]\displaystyle{ \nu }[/math] with a one-sided continuous-stable distribution with index [math]\displaystyle{ \alpha }[/math] results in a discrete-stable distribution with index [math]\displaystyle{ \nu \cdot \alpha }[/math], reducing the power-law index of the original distribution by a factor of [math]\displaystyle{ \alpha }[/math].

In other words,

[math]\displaystyle{ P(N| \nu \cdot \alpha, c \sec(\pi \alpha / 2)) = \int_0^\infty P(N| \alpha, \lambda)p(\lambda; \nu, 1, c, 0) \, d\lambda. }[/math]

In the Poisson limit

In the limit [math]\displaystyle{ \nu \rarr 1 }[/math], the discrete-stable distributions behave[9] like a Poisson distribution with mean [math]\displaystyle{ a \sec(\nu \pi / 2) }[/math] for small [math]\displaystyle{ N }[/math], however for [math]\displaystyle{ N \gg 1 }[/math], the power-law tail dominates.

The convergence of i.i.d. random variates with power-law tails [math]\displaystyle{ P(N) \sim 1/N^{1 + \nu} }[/math] to a discrete-stable distribution is extraordinarily slow[10] when [math]\displaystyle{ \nu \approx 1 }[/math] - the limit being the Poisson distribution when [math]\displaystyle{ \nu \gt 1 }[/math] and [math]\displaystyle{ P(N| \nu, a) }[/math] when [math]\displaystyle{ \nu \leq 1 }[/math].

See also

References

  1. Steutel, F. W.; van Harn, K. (1979). "Discrete Analogues of Self-Decomposability and Stability". Annals of Probability 7 (5): 893–899. doi:10.1214/aop/1176994950. https://pure.tue.nl/ws/files/1956807/Metis199408.pdf. 
  2. Barabási, Albert-László (2003). Linked: how everything is connected to everything else and what it means for business, science, and everyday life. New York, NY: Plum.
  3. Steyvers, M.; Tenenbaum, J. B. (2005). "The Large-Scale Structure of Semantic Networks: Statistical Analyses and a Model of Semantic Growth". Cognitive Science 29 (1): 41–78. doi:10.1207/s15516709cog2901_3. PMID 21702767. 
  4. Renshaw, Eric (2015-03-19) (in en). Stochastic Population Processes: Analysis, Approximations, Simulations. OUP Oxford. ISBN 978-0-19-106039-7. https://books.google.com/books?id=pqE1CgAAQBAJ&pg=PA134. 
  5. Hopcraft, K. I.; Jakeman, E.; Matthews, J. O. (2002). "Generation and monitoring of a discrete stable random process". Journal of Physics A 35 (49): L745–752. doi:10.1088/0305-4470/35/49/101. Bibcode2002JPhA...35L.745H. 
  6. "Modeling financial returns by discrete stable distributions". International Conference Mathematical Methods in Economics. http://mme2012.opf.slu.cz/proceedings/pdf/138_Slamova.pdf. Retrieved 2023-07-07. 
  7. Matthews, J. O.; Hopcraft, K. I.; Jakeman, E. (2003). "Generation and monitoring of discrete stable random processes using multiple immigration population models". Journal of Physics A 36 (46): 11585–11603. doi:10.1088/0305-4470/36/46/004. Bibcode2003JPhA...3611585M. 
  8. 8.0 8.1 Lee, W.H. (2010). Continuous and discrete properties of stochastic processes (PhD thesis). The University of Nottingham.
  9. 9.0 9.1 Lee, W. H.; Hopcraft, K. I.; Jakeman, E. (2008). "Continuous and discrete stable processes". Physical Review E 77 (1): 011109–1 to 011109–04. doi:10.1103/PhysRevE.77.011109. PMID 18351820. Bibcode2008PhRvE..77a1109L. 
  10. Hopcraft, K. I.; Jakeman, E.; Matthews, J. O. (2004). "Discrete scale-free distributions and associated limit theorems". Journal of Physics A 37 (48): L635–L642. doi:10.1088/0305-4470/37/48/L01. Bibcode2004JPhA...37L.635H. 

Further reading