Duhem–Margules equation
The Duhem–Margules equation, named for Pierre Duhem and Max Margules, is a thermodynamic statement of the relationship between the two components of a single liquid where the vapour mixture is regarded as an ideal gas:
- [math]\displaystyle{ \left ( \frac{\mathrm{d}\ln P_A}{\mathrm{d}\ln x_A} \right )_{T,P} = \left ( \frac{\mathrm{d}\ln P_B}{\mathrm{d}\ln x_B} \right )_{T,P} }[/math]
where PA and PB are the partial vapour pressures of the two constituents and xA and xB are the mole fractions of the liquid.
Derivation
Duhem - Margulus equation give the relation between change of mole fraction with partial pressure of a component in a liquid mixture.
Let consider a binary liquid mixture of two component in equilibrium with their vapor at constant temperature and pressure. Then from Gibbs–Duhem equation is
-
[math]\displaystyle{ n_A \mathrm{d} \mu_A + n_B \mathrm{d} \mu_B = 0 }[/math]
(
)
Where nA and nB are number of moles of the component A and B while μA and μB is their chemical potential.
Dividing equation (1) by nA + nB, then
[math]\displaystyle{ \frac{n_A}{n_A+n_B} \mathrm{d}\mu_A + \frac{n_B}{n_A+n_B}\mathrm{d}\mu_B = 0 }[/math]
Or
-
[math]\displaystyle{ x_A \mathrm{d} \mu_A + x_B \mathrm{d} \mu_B = 0 }[/math]
(
)
Now the chemical potential of any component in mixture is depend upon temperature, pressure and composition of mixture. Hence if temperature and pressure taking constant then chemical potential
-
[math]\displaystyle{ \mathrm{d} \mu_A = \left( \frac{\mathrm{d}\mu_A}{\mathrm{d}x_A} \right)_{T,P}\mathrm{d}x_A }[/math]
(
)
-
[math]\displaystyle{ \mathrm{d} \mu_B = \left( \frac{\mathrm{d}\mu_B}{\mathrm{d}x_B} \right)_{T,P}\mathrm{d}x_B }[/math]
(
)
Putting these values in equation (2), then
-
[math]\displaystyle{ x_A \left( \frac{\mathrm{d}\mu_A}{\mathrm{d}x_A} \right)_{T,P}\mathrm{d}x_A + x_B \left( \frac{\mathrm{d}\mu_B}{\mathrm{d}x_B} \right)_{T,P}\mathrm{d}x_B = 0 }[/math]
(
)
Because the sum of mole fraction of all component in the mixture is unity i.e.,
[math]\displaystyle{ x_1 + x_2 = 1 }[/math]
Hence
[math]\displaystyle{ \mathrm{d}x_1 + \mathrm{d}x_2 = 0 }[/math]
so equation (5) can be re-written:
-
[math]\displaystyle{ x_A \left( \frac{\mathrm{d}\mu_A}{\mathrm{d}x_A} \right)_{T,P} = x_B \left( \frac{\mathrm{d}\mu_B}{\mathrm{d}x_B} \right)_{T,P} }[/math]
(
)
Now the chemical potential of any component in mixture is such that
[math]\displaystyle{ \mu = \mu_0 + RT \ln P }[/math]
where P is partial pressure of component. By differentiating this equation with respect to the mole fraction of a component:
[math]\displaystyle{ \frac{\mathrm{d}\mu}{\mathrm{d}x} = RT \frac{\mathrm{d} \ln P}{\mathrm{d}x} }[/math]
So we have for components A and B
-
[math]\displaystyle{ \frac{\mathrm{d}\mu_A}{\mathrm{d}x_A} = RT \frac{\mathrm{d} \ln P_A}{\mathrm{d}x_A} }[/math]
(
)
-
[math]\displaystyle{ \frac{\mathrm{d}\mu_B}{\mathrm{d}x_B} = RT \frac{\mathrm{d} \ln P_B}{\mathrm{d}x_B} }[/math]
(
)
Substituting these value in equation (6), then
[math]\displaystyle{ x_A \frac{\mathrm{d} \ln P_A}{\mathrm{d}x_A} = x_B \frac{\mathrm{d} \ln P_B}{\mathrm{d}x_B} }[/math]
or
[math]\displaystyle{ \left ( \frac{\mathrm{d} \ln P_A}{\mathrm{d} \ln x_A} \right )_{T,P} = \left( \frac{\mathrm{d} \ln P_B}{\mathrm{d} \ln x_B} \right)_{T,P} }[/math]
this is the final equation of Duhem–Margules equation.
Sources
- Atkins, Peter and Julio de Paula. 2002. Physical Chemistry, 7th ed. New York: W. H. Freeman and Co.
- Carter, Ashley H. 2001. Classical and Statistical Thermodynamics. Upper Saddle River: Prentice Hall.
This article does not cite any external source. HandWiki requires at least one external source. See citing external sources. (2021) (Learn how and when to remove this template message) |
Original source: https://en.wikipedia.org/wiki/Duhem–Margules equation.
Read more |