Engineering:KOMDIV-32
From HandWiki
General Info | |
---|---|
Launched | 1999 |
Designed by | NIISI |
Common manufacturer(s) |
|
Performance | |
Max. CPU clock rate | 33 MHz to 125 MHz |
Architecture and classification | |
Min. feature size | 0.25 µm to 0.5 µm |
Instruction set | MIPS I |
Physical specifications | |
Cores |
|
History |
The KOMDIV-32 (Russian: КОМДИВ-32) is a family of 32-bit microprocessors developed and manufactured by the Scientific Research Institute of System Development (NIISI) of the Russian Academy of Sciences.[1][2] The manufacturing plant of NIISI is located in Dubna on the grounds of the Kurchatov Institute.[3] The KOMDIV-32 processors are intended primarily for spacecraft applications and many of them are radiation hardened (rad-hard).
These microprocessors are compatible with MIPS R3000 and have an integrated MIPS R3010 compatible floating-point unit.[4]
Overview
Designation | Production start (year) | Process (nm) | Clock rate (MHz) | Remarks | |
---|---|---|---|---|---|
Russian | English | ||||
1В812 | 1V812 | ? | 500 | 33 | [5] |
1890ВМ1Т | 1890VM1T | 2000 | 500 | 50 | rad-hard[4][6][7][8] |
1890ВМ2Т | 1890VM2T | 2003 | 350 | 90 | [4][6][7][8][9] |
1990ВМ2Т | 1990VM2T | 2008 ? | 350 | 66 | rad-hard[4][6][7][10] |
5890ВМ1Т | 5890VM1Т | 2009 | 500 | 33 | rad-hard[4][6][7][8][11] |
5890ВЕ1Т | 5890VE1Т | 2009 | 500 | 33 | rad-hard[4][6][7][8][11][12] |
1900ВМ2Т | 1900VM2T | 2012 | 350 | 66 | rad-hard[4][6][7][8][11][12] |
1904ВЕ1Т | 1904VE1T | 2016 | 350 | 40 | [6][13] |
1907ВМ014 | 1907VM014 | 2016 | 250 | 100 | rad-hard[4][6][8] |
1907ВМ038 | 1907VM038 | 2016 ? | 250 | 125 | rad-hard[4][6][10][14][15][16] |
1907ВМ044 | 1907VM044 | 2016 ? | 250 | 66 | rad-hard[4][6][8][14][15][17] |
1907ВМ056 | 1907VM056 | 2016 ? | 250 | 100 | rad-hard[4][6][8][14][15] |
1907ВМ066 | 1907VM066 | 2016 ? | 250 | 100 | rad-hard[4][6][8][14][15] |
1907ВК016 | 1907VK016 | ? | 250 | 100 | rad-hard[4][8][14][15] |
Details
1V812
- 0.5 µm CMOS process, 3-layer metal
- 108-pin ceramic Quad Flat Package (QFP)
- 1.5 million transistors, 8KB L1 instruction cache, 8KB L1 data cache, compatible with IDT 79R3081E
1890VM1T
- 0.5 µm CMOS process
1890VM2T
- 0.35 µm CMOS process
1990VM2T
- 0.35 µm silicon on insulator (SOI) CMOS process
- 108-pin ceramic Quad Flat Package (QFP)
- working temperature from -60 to 125 °C
5890VM1Т
- 0.5 µm silicon on insulator (SOI) CMOS process
- 108-pin ceramic Quad Flat Package (QFP)
- cache (8KB each for data and instructions)
- working temperature from -60 to 125 °C
5890VE1Т
- 0.5 µm SOI CMOS process
- 240-pin ceramic QFP
- radiation tolerance to not less than 200 kRad, working temperature from -60 to 125 °C
- System-on-a-chip (SoC) including PCI master / slave, 16 GPIO, 3 UART, 3 32-bit timers
- cache (8KB each for data and instructions)
- second-sourced by MVC Nizhny Novgorod under the name 1904VE1T (Russian: 1904ВЕ1Т) with a clock rate of 40 MHz
1900VM2T
- development name Rezerv-32
- 0.35 µm SOI CMOS process
- 108-pin ceramic QFP
- radiation tolerance to not less than 200 kRad, working temperature from -60 to 125 °C
- triple modular redundancy on block level with self-healing
- both registers and cache (4KB each for data and instructions) are implemented as dual interlocked storage cells (DICE)
1907VM014
- 0.25 µm SOI CMOS process; manufacturing to be moved to Mikron
- 256-pin ceramic QFP
- production planned for 2016 (previously this device was planned to go into production in 2014 under the name 1907VE1T or 1907VM1T)[12]
- radiation tolerance to not less than 200 kRad
- SoC including SpaceWire, GOST R 52070-2003 (Russian version of MIL-STD-1553), SPI, 32 GPIO, 2 UART, 3 timers, JTAG
- cache (8KB each for data and instructions)
1907VM038
- development name Skhema-10
- 0.25 µm SOI CMOS process; manufacturing to be moved to Mikron
- 675-pin ceramic BGA
- SoC including SpaceWire, GOST R 52070-2003 (MIL-STD-1553), RapidIO, SPI, I²C, 16 GPIO, 2 UART, 3 32-bit timers, JTAG, DSP (same command set as DSP in 1890VM7Ya)
- DDR2 SDRAM controller with ECC
- cache (8KB each for data and instructions)
- working temperature from -60 to 125 °C
1907VM044
- development name Obrabotka-10
- 0.25 µm SOI CMOS process; manufactured by Mikron
- 256-pin ceramic QFP
- SoC including SpaceWire, GOST R 52070-2003 (MIL-STD-1553), SPI, 32 GPIO, 2 UART, 3 timers, JTAG
- radiation tolerance to not less than 200 kRad
- triple modular redundancy in processor core
- both registers and cache (4KB each for data and instructions) are implemented as dual interlocked storage cells (DICE) with 1 parity bit per byte for cache and Hamming code for registers
- SECDED for external memory
- working temperature from -60 to 125 °C
1907VM056
- development name Skhema-23
- 0.25 µm SOI CMOS process; manufactured by Mikron
- 407-pin ceramic PGA
- SoC including 8-channel SpaceWire, GOST R 52070-2003 (MIL-STD-1553), SPI, I²C, CAN bus, 32 GPIO, 2 UART, 3 timers, JTAG
- cache (8KB each for data and instructions)
1907VM066
- development name Obrabotka-26
- 0.25 µm silicon on insulator (SOI) CMOS process; manufactured by Mikron
- 407-pin ceramic PGA
- SoC including 4-channel SpaceWire, GOST R 52070-2003 (MIL-STD-1553), SPI, I²C, RapidIO, GPIO, 2 UART, 3 timers, JTAG, PCI, co-processor for image processing
- cache (8KB each for data and instructions)
1907VK016
- development name Obrabotka-29
- 0.25 µm silicon on insulator (SOI) CMOS process; manufactured by Mikron
- PGA
- SoC including 4-channel SpaceWire, GOST R 52070-2003 (MIL-STD-1553), SPI, 32 GPIO, 2 UART, 3 timers, 128KB SRAM
- triple modular redundancy in processor core
See also
- KOMDIV-64, 64-bit MIPS processors developed by NIISI
- Mongoose-V, a 32-bit MIPS processor for spacecraft applications developed for NASA
- Soviet integrated circuit designation
References
- ↑ "Отделение разработки вычислительных систем" (in Russian). NIISI. https://www.niisi.ru/orvs.htm. Retrieved 9 September 2016.
- ↑ "First Russian MIPS-Compatible Microprocessor". 22 December 2007. http://dailyrumors.blogspot.com/2007/12/first-russian-mips-compatible.html. Retrieved 6 September 2016.
- ↑ Шунков, Валерий (28 March 2014). "Российская микроэлектроника для космоса: кто и что производит" (in Russian). Geektimes. https://geektimes.ru/post/254138/. Retrieved 8 April 2017.
- ↑ 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 "Разработка СБИС - Развитие микропроцессоров с архитектурой КОМДИВ" (in Russian). NIISI. https://www.niisi.ru/devel.htm. Retrieved 6 September 2016.
- ↑ "ОДНОКРИСТАЛЬНЫЙ МИКРОПРОЦЕССОР С АРХИТЕКТУРОЙ MIPS 1B812" (in Russian). NIISI. https://www.niisi.ru/o/1b578omp_short.doc. Retrieved 7 September 2016.
- ↑ 6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.10 6.11 "Изделия отечественного производства" (in Russian). AO "ENPO SPELS". http://www.spels.ru/index.php?option=com_easytablepro&view=easytable&id=13. Retrieved 1 September 2016.
- ↑ 7.0 7.1 7.2 7.3 7.4 7.5 "Микросхемы вычислительных средств, включая микропроцессоры, микроЭВМ, цифровые процессоры обработки сигналов и контроллеры" (in ru). Promelektronika VPK. http://promvpk.ru/Catalog/Index/51a26afb6d0fad80e40359fc. Retrieved 25 October 2017.
- ↑ 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 "Перспективные ЭВМ семейства БАГЕТ" (in ru). AO KB "Korund-M". 2017. http://nesmelov.com/images/portfolio/polygraphy/korund-m.pdf.
- ↑ "1890ВМ2Т" (in Russian). NIISI. https://www.niisi.ru/1810BM2T.pdf. Retrieved 9 September 2016.
- ↑ 10.0 10.1 Костарев, Иван Николаевич (28 January 2017). "Методика обеспечения сбоеустойчивости ПЛИС для ракетно-космического применения" (in Russian). Moscow Institute of Electronics and Mathematics. http://statref.ru/ref_qaspolotryfs.html. Retrieved 11 February 2020.
- ↑ 11.0 11.1 11.2 Osipenko, Pavel Nikolaevich (12 October 2011). "Аспекты радиационной стойкости интегральных микросхем" (in Russian). NIISI. http://cad2011.mephi.ru/downloads/Osipenko_Radiation_2011.pdf. Retrieved 7 September 2016.
- ↑ 12.0 12.1 12.2 Osipenko, Pavel Nikolaevich (25 May 2012). "ИЗДЕЛИЯ НАУЧНО-ИССЛЕДОВАТЕЛЬСКОГО ИНСТИТУТА СИСТЕМНЫХ ИССЛЕДОВАНИЙ РАН ДЛЯ АЭРОКОСМИЧЕСКИХ ПРИЛОЖЕНИЙ" (in Russian). Tarusa. pp. 139–148. http://www.iki.rssi.ru/books/2013mal_apparati.pdf. Retrieved 7 September 2016.
- ↑ "Микропроцессоры и микроконтроллеры" (in Russian). MVC. 2014. http://mvc-nn.ru/%d0%bf%d1%80%d0%be%d0%b4%d1%83%d0%ba%d1%86%d0%b8%d1%8f/%d0%bc%d0%b8%d0%ba%d1%80%d0%be%d0%bf%d1%80%d0%be%d1%86%d0%b5%d1%81%d1%81%d0%be%d1%80%d1%8b-%d0%b8-%d0%bc%d0%b8%d0%ba%d1%80%d0%be%d0%ba%d0%be%d0%bd%d1%82%d1%80%d0%be%d0%bb%d0%bb%d0%b5%d1%80%d1%8b/. Retrieved 29 March 2018.
- ↑ 14.0 14.1 14.2 14.3 14.4 Serdin, O.V. (2017). "The special radiation-hardened processors for new highly informative experiments in space". Journal of Physics 798 (1): 012010. doi:10.1088/1742-6596/798/1/012010. Bibcode: 2017JPhCS.798a2010S.
- ↑ 15.0 15.1 15.2 15.3 15.4 Serdin, O.V. (13 October 2016). "The special radiation-hardened processors for new highly informative experiments in space". http://indico.cfr.mephi.ru/event/4/session/29/contribution/19/material/slides/0.pdf. Retrieved 5 April 2017.
- ↑ "Микросхема 1907ВМ038" (in Russian). NIISI. https://www.niisi.ru/1907BM038.pdf. Retrieved 28 March 2017.
- ↑ "Микросхема 1907ВМ044" (in Russian). NIISI. https://www.niisi.ru/1907BM044.pdf. Retrieved 3 April 2017.
Original source: https://en.wikipedia.org/wiki/KOMDIV-32.
Read more |