Engineering:Surface activated bonding
Surface activated bonding (SAB) is a low-temperature wafer bonding technology with atomically clean and activated surfaces. Surface activation prior to bonding by using fast atom bombardment is typically employed to clean the surfaces. High-strength bonding of semiconductor, metal, and dielectric can be obtained even at room temperature.[1][2]
Overview
In the standard SAB method, wafer surfaces are activated by argon fast atom bombardment in ultra-high vacuum (UHV) of 10−4–10−7 Pa. The bombardment removes adsorbed contaminants and native oxides on the surfaces. The activated surfaces are atomically clean and reactive for formation of direct bonds between wafers when they are brought into contact even at room temperature.
Researches on SAB
The SAB method has been studied for bonding of various materials, as shown in Table I.
The standard SAB, however, failed to bond some materials such as SiO2 and polymer films. The modified SAB was developed to solve this problem, by using a sputtering deposited Si intermediate layer to improve the bond strength.
The combined SAB has been developed for SiO2-SiO2 and Cu/SiO2 hybrid bonding, without use of any intermediate layer.
Technical specifications
Materials | |
Advantages |
|
Drawbacks |
|
References
- ↑ "Room Temperature Wafer Bonding Machine BOND MEISTER|Mitsubishi Heavy Industries Machine Tool Co., Ltd.". https://www.mhi-machinetool.com/en/products/detail/wafer_bonding_machine.html.
- ↑ Ltd, Mitsubishi Heavy Industries (16 January 2012). "MHI Develops World's First 12-inch Wafer Bonding Machine | Mitsubishi Heavy Industries, Ltd. Global Website". https://www.mhi.com/news/story/1201161491.html.
- ↑ Jump up to: 3.0 3.1 Takagi, H.; Kikuchi, K.; Maeda, R.; Chung, T. R.; Suga, T. (1996-04-15). "Surface activated bonding of silicon wafers at room temperature". Applied Physics Letters 68 (16): 2222–2224. doi:10.1063/1.115865. ISSN 0003-6951. Bibcode: 1996ApPhL..68.2222T.
- ↑ Jump up to: 4.0 4.1 Wang, Chenxi; Suga, Tadatomo (2011-05-01). "Room-Temperature Direct Bonding Using Fluorine Containing Plasma Activation" (in en). Journal of the Electrochemical Society 158 (5): H525–H529. doi:10.1149/1.3560510. ISSN 0013-4651. http://jes.ecsdl.org/content/158/5/H525.full.pdf.
- ↑ Jump up to: 5.0 5.1 J. Liang, T. Miyazaki, M. Morimoto, S. Nishida, N. Watanabe, and N. Shigekawa, “Electrical Properties of p-Si/n-GaAs Heterojunctions by Using Surface-Activated Bonding,” Appl. Phys. Express, vol. 6, no. 2, p. 021801, Feb. 2013. Available doi:10.7567/APEX.6.021801
- ↑ Jump up to: 6.0 6.1 6.2 Liang, J.; Nishida, S.; Arai, M.; Shigekawa, N. (2014-04-21). "Effects of thermal annealing process on the electrical properties of p+-Si/n-SiC heterojunctions". Applied Physics Letters 104 (16): 161604. doi:10.1063/1.4873113. ISSN 0003-6951. Bibcode: 2014ApPhL.104p1604L. http://dlisv03.media.osaka-cu.ac.jp/contents/osakacu/kiyo/10773118-104-16-161604.pdf.
- ↑ Jump up to: 7.0 7.1 7.2 7.3 H. Takagi, J. Utsumi, M. Takahashi, and R. Maeda, “Room-Temperature Bonding of Oxide Wafers by Ar-beam Surface Activation,” ECS Trans., vol. 16, no. 8, pp. 531–537, Oct. 2008. Available doi:10.1149/1.2982908
- ↑ Jump up to: 8.0 8.1 Ichikawa, Masatsugu; Fujioka, Akira; Kosugi, Takao; Endo, Shinya; Sagawa, Harunobu; Tamaki, Hiroto; Mukai, Takashi; Uomoto, Miyuki et al. (2016). "High-output-power deep ultraviolet light-emitting diode assembly using direct bonding". Applied Physics Express 9 (7): 072101. doi:10.7567/apex.9.072101. Bibcode: 2016APExp...9g2101I.
- ↑ Jump up to: 9.0 9.1 Higurashi, Eiji; Sasaki, Yuta; Kurayama, Ryuji; Suga, Tadatomo; Doi, Yasuo; Sawayama, Yoshihiro; Hosako, Iwao (2015-03-01). "Room-temperature direct bonding of germanium wafers by surface-activated bonding method" (in en). Japanese Journal of Applied Physics 54 (3): 030213. doi:10.7567/jjap.54.030213. Bibcode: 2015JaJAP..54c0213H.
- ↑ Jump up to: 10.0 10.1 10.2 Higurashi, Eiji; Okumura, Ken; Nakasuji, Kaori; Suga, Tadatomo (2015-03-01). "Surface activated bonding of GaAs and SiC wafers at room temperature for improved heat dissipation in high-power semiconductor lasers" (in en). Japanese Journal of Applied Physics 54 (3): 030207. doi:10.7567/jjap.54.030207. Bibcode: 2015JaJAP..54c0207H.
- ↑ Jump up to: 11.0 11.1 Mu, F.; Iguchi, K.; Nakazawa, H.; Takahashi, Y.; Fujino, M.; Suga, T. (30 June 2016). "Direct Wafer Bonding of SiC-SiC by SAB for Monolithic Integration of SiC MEMS and Electronics". ECS Journal of Solid State Science and Technology 5 (9): P451–P456. doi:10.1149/2.0011609jss.
- ↑ Jump up to: 12.0 12.1 Kim, T. H.; Howlader, M. M. R.; Itoh, T.; Suga, T. (2003-03-01). "Room temperature Cu–Cu direct bonding using surface activated bonding method". Journal of Vacuum Science & Technology A 21 (2): 449–453. doi:10.1116/1.1537716. ISSN 0734-2101. Bibcode: 2003JVST...21..449K.
- ↑ Jump up to: 13.0 13.1 Shigetou, A.; Itoh, T.; Matsuo, M.; Hayasaka, N.; Okumura, K.; Suga, T. (2006-05-01). "Bumpless interconnect through ultrafine Cu electrodes by means of surface-activated bonding (SAB) method". IEEE Transactions on Advanced Packaging 29 (2): 218–226. doi:10.1109/TADVP.2006.873138. ISSN 1521-3323.
- ↑ R. Kondou and T. Suga, “Room temperature SiO2 wafer bonding by adhesion layer method,” presented at the Electronic Components and Technology Conference (ECTC), 2011 IEEE 61st, 2011, pp. 2165–2170. Available doi:10.1109/ECTC.2011.5898819
- ↑ T. Matsumae, M. Fujino, and T. Suga, “Room-temperature bonding method for polymer substrate of flexible electronics by surface activation using nano-adhesion layers,” Japanese Journal of Applied Physics, vol. 54, no. 10, p. 101602, Oct. 2015. Available doi:10.7567/JJAP.54.101602
- ↑ Jump up to: 16.0 16.1 Matsumae, Takashi; Nakano, Masashi; Matsumoto, Yoshiie; Suga, Tadatomo (2013-03-15). "Room Temperature Bonding of Polymer to Glass Wafers Using Surface Activated Bonding (SAB) Method" (in en). ECS Transactions 50 (7): 297–302. doi:10.1149/05007.0297ecst. ISSN 1938-6737. Bibcode: 2013ECSTr..50g.297M.
- ↑ Jump up to: 17.0 17.1 Takeuchi, K.; Fujino, M.; Suga, T.; Koizumi, M.; Someya, T. (2015-05-01). "Room temperature direct bonding and debonding of polymer film on glass wafer for fabrication of flexible electronic devices". 2015 IEEE 65th Electronic Components and Technology Conference (ECTC). pp. 700–704. doi:10.1109/ECTC.2015.7159668. ISBN 978-1-4799-8609-5.
- ↑ Jump up to: 18.0 18.1 Mu, Fengwen; Iguchi, Kenichi; Nakazawa, Haruo; Takahashi, Yoshikazu; Fujino, Masahisa; Suga, Tadatomo (2016-04-01). "Room-temperature wafer bonding of SiC–Si by modified surface activated bonding with sputtered Si nanolayer" (in en). Japanese Journal of Applied Physics 55 (4S): 04EC09. doi:10.7567/jjap.55.04ec09. Bibcode: 2016JaJAP..55dEC09M.
- ↑ K. Tsuchiyama, K. Yamane, H. Sekiguchi, H. Okada, and A. Wakahara, “Fabrication of Si/SiO2/GaN structure by surface-activated bonding for monolithic integration of optoelectronic devices,” Japanese Journal of Applied Physics, vol. 55, no. 5S, p. 05FL01, May 2016. Available doi:10.7567/JJAP.55.05FL01
- ↑ Jump up to: 20.0 20.1 He, Ran; Fujino, Masahisa; Yamauchi, Akira; Suga, Tadatomo (2016-04-01). "Combined surface-activated bonding technique for low-temperature hydrophilic direct wafer bonding" (in en). Japanese Journal of Applied Physics 55 (4S): 04EC02. doi:10.7567/jjap.55.04ec02. Bibcode: 2016JaJAP..55dEC02H.
- ↑ Jump up to: 21.0 21.1 He, Ran; Fujino, Masahisa; Yamauchi, Akira; Wang, Yinghui; Suga, Tadatomo (2016-01-01). "Combined Surface Activated Bonding Technique for Low-Temperature Cu/Dielectric Hybrid Bonding" (in en). ECS Journal of Solid State Science and Technology 5 (7): P419–P424. doi:10.1149/2.0201607jss. ISSN 2162-8769.
- ↑ He, Ran; Fujino, Masahisa; Yamauchi, Akira; Suga, Tadatomo (2015-03-01). "Novel hydrophilic SiO2 wafer bonding using combined surface-activated bonding technique" (in en). Japanese Journal of Applied Physics 54 (3): 030218. doi:10.7567/jjap.54.030218. Bibcode: 2015JaJAP..54c0218H.
Original source: https://en.wikipedia.org/wiki/Surface activated bonding.
Read more |