Equation =

From HandWiki
Graph of xy = yx.

In general, exponentiation fails to be commutative. However, the equation [math]\displaystyle{ x^y = y^x }[/math] holds in special cases, such as [math]\displaystyle{ x=2,\ y=4. }[/math][1]

History

The equation [math]\displaystyle{ x^y=y^x }[/math] is mentioned in a letter of Bernoulli to Goldbach (29 June 1728[2]). The letter contains a statement that when [math]\displaystyle{ x\ne y, }[/math] the only solutions in natural numbers are [math]\displaystyle{ (2, 4) }[/math] and [math]\displaystyle{ (4, 2), }[/math] although there are infinitely many solutions in rational numbers, such as [math]\displaystyle{ (\tfrac{27}{8}, \tfrac{9}{4}) }[/math] and [math]\displaystyle{ (\tfrac{9}{4}, \tfrac{27}{8}) }[/math].[3][4] The reply by Goldbach (31 January 1729[2]) contains general solution of the equation, obtained by substituting [math]\displaystyle{ y=vx. }[/math][3] A similar solution was found by Euler.[4]

J. van Hengel pointed out that if [math]\displaystyle{ r, n }[/math] are positive integers with [math]\displaystyle{ r \geq 3 }[/math], then [math]\displaystyle{ r^{r+n} \gt (r+n)^r; }[/math] therefore it is enough to consider possibilities [math]\displaystyle{ x = 1 }[/math] and [math]\displaystyle{ x = 2 }[/math] in order to find solutions in natural numbers.[4][5]

The problem was discussed in a number of publications.[2][3][4] In 1960, the equation was among the questions on the William Lowell Putnam Competition,[6][7] which prompted Alvin Hausner to extend results to algebraic number fields.[3][8]

Positive real solutions

Main source:[1]

A general solution to x^y = y^x is obtained by noting that the positive real quadrant can be 'covered' by the intersection of the two equations y=mx and y=x^n (m>0,n>0). Requiring that some points also satisfy the equation x^y=-y^x, means that x^(mx)=(x^n)^x=x^(nx), and by comparing exponents, m=n. Thus, the 'covering' equations mean that nx=x^n, and exponentiating both sides by 1/n (n not equal to 1), x=n^(1(n-1)), and y=n^(n/(n-1). The case of m=n=1 corresponds to the solution y=x. The full solution thus is {y=x} union {n^(1/(n-1),n^(n/(n-1)) for all n>0 and not equal to 1}.

Based on the above solution, the derivative dy/dx is 1 for the (x,y) pairs on the line y=x, and for the other (x,y) pairs can be found by (dy/dn)/(dx/dn), which straightforward calculus gives as dy/dx = -n^2 for n>0 and not equal to 1.

The following treatment explores some special cases and notes linkages to other mathematical concepts.

An infinite set of trivial solutions in positive real numbers is given by [math]\displaystyle{ x = y. }[/math] Nontrivial solutions can be written explicitly as

[math]\displaystyle{ y=e^{-W_{-1}\bigl(\frac{-\ln(x)}{x}\bigr)} \quad \mathrm{for} \quad 1\lt x\lt e, }[/math]

[math]\displaystyle{ y=e^{-W_{0}\bigl(\frac{-\ln(x)}{x}\bigr)} \quad \mathrm{for} \quad e\lt x. }[/math]

Here, [math]\displaystyle{ W_{-1} }[/math] and [math]\displaystyle{ W_0 }[/math] represent the negative and principal branches of the Lambert W function.

Nontrivial solutions can be more easily found by assuming [math]\displaystyle{ x \ne y }[/math] and letting [math]\displaystyle{ y = vx. }[/math] Then

[math]\displaystyle{ (vx)^x = x^{vx} = (x^v)^x. }[/math]

Raising both sides to the power [math]\displaystyle{ \tfrac{1}{x} }[/math] and dividing by [math]\displaystyle{ x }[/math], we get

[math]\displaystyle{ v = x^{v-1}. }[/math]

Then nontrivial solutions in positive real numbers are expressed as the parametric equation

[math]\displaystyle{ x = v^{1/(v-1)}, }[/math]
[math]\displaystyle{ y = v^{v/(v-1)}. }[/math]

Setting [math]\displaystyle{ v=2 }[/math] or [math]\displaystyle{ v=\tfrac{1}{2} }[/math] generates the nontrivial solution in positive integers, [math]\displaystyle{ 4^2=2^4. }[/math]

Other pairs consisting of algebraic numbers exist, such as [math]\displaystyle{ \sqrt 3 }[/math] and [math]\displaystyle{ 3\sqrt 3 }[/math], as well as [math]\displaystyle{ \sqrt[3]4 }[/math] and [math]\displaystyle{ 4\sqrt[3]4 }[/math].

The parameterization above leads to a geometric property of this curve. It can be shown that [math]\displaystyle{ x^y = y^x }[/math] describes the isocline curve where power functions of the form [math]\displaystyle{ x^v }[/math] have slope [math]\displaystyle{ v^2 }[/math] for some positive real choice of [math]\displaystyle{ v\neq 1 }[/math]. For example, [math]\displaystyle{ x^8=y }[/math] has a slope of [math]\displaystyle{ 8^2 }[/math] at [math]\displaystyle{ (\sqrt[7]{8}, \sqrt[7]{8}^8), }[/math] which is also a point on the curve [math]\displaystyle{ x^y=y^x. }[/math]

The trivial and non-trivial solutions intersect when [math]\displaystyle{ v = 1 }[/math]. The equations above cannot be evaluated directly at [math]\displaystyle{ v = 1 }[/math], but we can take the limit as [math]\displaystyle{ v\to 1 }[/math]. This is most conveniently done by substituting [math]\displaystyle{ v = 1 + 1/n }[/math] and letting [math]\displaystyle{ n\to\infty }[/math], so

[math]\displaystyle{ x = \lim_{v\to 1}v^{1/(v-1)} = \lim_{n\to\infty}\left(1+\frac 1n\right)^n = e. }[/math]

Thus, the line [math]\displaystyle{ y = x }[/math] and the curve for [math]\displaystyle{ x^y-y^x = 0,\,\, y \ne x }[/math] intersect at x = y = e.

As [math]\displaystyle{ x \to \infty }[/math], the nontrivial solution asymptotes to the line [math]\displaystyle{ y = 1 }[/math]. A more complete asymptotic form is

[math]\displaystyle{ y = 1 + \frac{\ln x}{x} + \frac{3}{2} \frac{(\ln x)^2}{x^2} + \cdots. }[/math]

Other real solutions

An infinite set of discrete real solutions with at least one of [math]\displaystyle{ x }[/math] and [math]\displaystyle{ y }[/math] negative also exist. These are provided by the above parameterization when the values generated are real. For example, [math]\displaystyle{ x=\frac{1}{\sqrt[3]{-2}} }[/math], [math]\displaystyle{ y=\frac{-2}{\sqrt[3]{-2}} }[/math] is a solution (using the real cube root of [math]\displaystyle{ -2 }[/math]). Similarly an infinite set of discrete solutions is given by the trivial solution [math]\displaystyle{ y=x }[/math] for [math]\displaystyle{ x\lt 0 }[/math] when [math]\displaystyle{ x^x }[/math] is real; for example [math]\displaystyle{ x=y=-1 }[/math].

Similar graphs

Equation [math]\displaystyle{ \sqrt[x]{y}=\sqrt[y]{x} }[/math]

The equation [math]\displaystyle{ \sqrt[x]y = \sqrt[y]x }[/math] produces a graph where the line and curve intersect at [math]\displaystyle{ 1/e }[/math]. The curve also terminates at (0, 1) and (1, 0), instead of continuing on to infinity.

The curved section can be written explicitly as

[math]\displaystyle{ y=e^{W_0(\ln(x^x))} \quad \mathrm{for} \quad 0\lt x\lt 1/e, }[/math]

[math]\displaystyle{ y=e^{W_{-1}(\ln(x^x))} \quad \mathrm{for} \quad 1/e\lt x\lt 1. }[/math]

This equation describes the isocline curve where power functions have slope 1, analogous to the geometric property of [math]\displaystyle{ x^y = y^x }[/math] described above.

The equation is equivalent to [math]\displaystyle{ y^y=x^x, }[/math] as can be seen by raising both sides to the power [math]\displaystyle{ xy. }[/math]

Equation [math]\displaystyle{ \log_{x}(y)=\log_{y}(x) }[/math]

The equation [math]\displaystyle{ \log_x(y) = \log_y(x) }[/math] produces a graph where the curve and line intersect at (1, 1). The curve becomes asymptotic to 0, as opposed to 1; it is, in fact, the positive section of y = 1/x.

References

  1. 1.0 1.1 Lóczi, Lajos. "On commutative and associative powers". KöMaL. http://www.komal.hu/cikkek/loczy/powers/commpower.e.shtml.  Translation of: "Mikor kommutatív, illetve asszociatív a hatványozás?" (in hu). http://db.komal.hu/KomalHU/cikk.phtml?id=200047. 
  2. 2.0 2.1 2.2 Singmaster, David. "Sources in recreational mathematics: an annotated bibliography. 8th preliminary edition". http://www.gotham-corp.com/sources.htm#_Toc69534169. 
  3. 3.0 3.1 3.2 3.3 "On the Rational Solutions of xy = yx". Mathematics Magazine. 1990. http://www.maa.org/sites/default/files/Sved50816668.pdf. 
  4. 4.0 4.1 4.2 4.3 "Rational solutions of xy = yx", History of the Theory of Numbers, II, Washington, 1920, pp. 687, https://books.google.com/books?id=dO7C02z4LlcC&pg=PA687 
  5. van Hengel, Johann (1888). Beweis des Satzes, dass unter allen reellen positiven ganzen Zahlen nur das Zahlenpaar 4 und 2 für a und b der Gleichung ab = ba genügt. http://digital.ub.uni-duesseldorf.de/ulbdsp/periodical/titleinfo/4315444. 
  6. "The twenty-first William Lowell Putnam mathematical competition (December 3, 1960), afternoon session, problem 1", The William Lowell Putnam mathematical competition problems and solutions: 1938-1964, MAA, 1980, pp. 59, ISBN 0-88385-428-7, https://books.google.com/books?id=7D0PAQAAMAAJ&q=%22prove+that+you+have+obtained+all+of+them%22 
  7. "21st Putnam 1960. Problem B1". 20 Oct 1999. http://www.kalva.demon.co.uk/putnam/putn60.html. 
  8. Hausner, Alvin (November 1961). "Algebraic Number Fields and the Diophantine Equation mn = nm". The American Mathematical Monthly 68 (9): 856–861. doi:10.1080/00029890.1961.11989781. ISSN 0002-9890. 

External links