Equianharmonic
From HandWiki
In mathematics, and in particular the study of Weierstrass elliptic functions, the equianharmonic case occurs when the Weierstrass invariants satisfy g2 = 0 and g3 = 1.[1] This page follows the terminology of Abramowitz and Stegun; see also the lemniscatic case. (These are special examples of complex multiplication.)
In the equianharmonic case, the minimal half period ω2 is real and equal to
- [math]\displaystyle{ \frac{\Gamma^3(1/3)}{4\pi} }[/math]
where [math]\displaystyle{ \Gamma }[/math] is the Gamma function. The half period is
- [math]\displaystyle{ \omega_1=\tfrac{1}{2}(-1+\sqrt3i)\omega_2. }[/math]
Here the period lattice is a real multiple of the Eisenstein integers.
The constants e1, e2 and e3 are given by
- [math]\displaystyle{ e_1=4^{-1/3}e^{(2/3)\pi i},\qquad e_2=4^{-1/3},\qquad e_3=4^{-1/3}e^{-(2/3)\pi i}. }[/math]
The case g2 = 0, g3 = a may be handled by a scaling transformation.
References
- ↑ Abramowitz, Milton; Stegun, Irene A. (June 1964). "Pocketbook of Mathematical Functions--Abridged Edition of Handbook of Mathematical Functions, Milton Abramowitz and Irene A. Stegun.". Mathematics of Computation 50 (182): 652–657. doi:10.2307/2008636. ISSN 0025-5718. http://dx.doi.org/10.2307/2008636.
Original source: https://en.wikipedia.org/wiki/Equianharmonic.
Read more |