Euler–Poisson–Darboux equation

From HandWiki

In mathematics, the Euler–Poisson–Darboux(EPD)[1][2] equation is the partial differential equation

ux,y+N(ux+uy)x+y=0.

This equation is named for Siméon Poisson, Leonhard Euler, and Gaston Darboux. It plays an important role in solving the classical wave equation.

This equation is related to

urr+mrurutt=0,

by x=r+t, y=rt, where N=m2[2] and some sources quote this equation when referring to the Euler–Poisson–Darboux equation.[3][4][5][6]

The EPD equation is the simplest linear hyperbolic equation in two independent variables whose coefficients exhibit singularities, therefore it has an interest as a paradigm to relativity theory.[7]

Compact support self-similar solution of the EPD equation for thermal conduction was derived starting from the modified Fourier-Cattaneo law.[8]

It is also possible to solve the non-linear EPD equations with the method of generalized separation of variables.[9]

References

  1. Zwillinger, D. (1997). Handbook of Differential Equations 3rd edition. Academic Press, Boston, MA. 
  2. 2.0 2.1 Copson, E. T. (1975). Partial differential equations. Cambridge: Cambridge University Press. ISBN 978-0-521-09893-9. OCLC 1499723. 
  3. Copson, E. T. (1956-06-12). "On a regular Cauchy problem for the Euler—Poisson—Darboux equation" (in en). Proc. R. Soc. Lond. A 235 (1203): 560–572. doi:10.1098/rspa.1956.0106. ISSN 0080-4630. Bibcode1956RSPSA.235..560C. 
  4. Shishkina, Elina L.; Sitnik, Sergei M. (2017-07-15). "The general form of the Euler--Poisson--Darboux equation and application of transmutation method". arXiv:1707.04733 [math.CA].
  5. Miles, E.P; Young, E.C (1966). "On a Cauchy problem for a generalized Euler-Poisson-Darboux equation with polyharmonic data" (in en). Journal of Differential Equations 2 (4): 482–487. doi:10.1016/0022-0396(66)90056-8. Bibcode1966JDE.....2..482M. 
  6. Fusaro, B. A. (1966). "A Solution of a Singular, Mixed Problem for the Equation of Euler-Poisson- Darboux (EPD)". The American Mathematical Monthly 73 (6): 610–613. doi:10.2307/2314793. 
  7. Stewart, J.M. (2009). "The Euler–Poisson–Darboux equation for relativists". Gen. Rel. Grav. 41 (9): 2045–2071. doi:10.1007/s10714-009-0829-3. Bibcode2009GReGr..41.2045S. https://link.springer.com/article/10.1007/s10714-009-0829-3. 
  8. Barna, I.F.; Kersner, R. (2010). "Heat conduction: a telegraph-type model with self-similar behavior of solutions". Journal of Physics A: Mathematical and General 43 (37). doi:10.1088/1751-8113/43/37/375210. Bibcode2010JPhA...43K5210B. https://iopscience.iop.org/journal/0305-4470. 
  9. Garra, R.; Orsingher, E.; Shishkina, Shishkina (2019). "Solutions to Non-linear Euler-Poisson-Darboux Equations by Means of Generalized Separation of Variables". Lobachevskii Journal of Mathematics 40 (640–647): 640–647. doi:10.1134/S1995080219050093. https://link.springer.com/article/10.1134/S1995080219050093. 

Template:Leonhard Euler