Eulerian number
In combinatorics, the Eulerian number [math]\displaystyle{ A(n,k) }[/math] is the number of permutations of the numbers 1 to [math]\displaystyle{ n }[/math] in which exactly [math]\displaystyle{ k }[/math] elements are greater than the previous element (permutations with [math]\displaystyle{ k }[/math] "ascents").
Leonhard Euler investigated them and associated polynomials in his 1755 book Institutiones calculi differentialis.
Other notations for [math]\displaystyle{ A(n,k) }[/math] are [math]\displaystyle{ E(n,k) }[/math] and [math]\displaystyle{ \textstyle \left\langle {n \atop k} \right\rangle }[/math].
Definition
The Eulerian polynomials [math]\displaystyle{ A_n(t) }[/math] are defined by the exponential generating function
- [math]\displaystyle{ \sum_{n=0}^{\infty} A_{n}(t) \,\frac{x^n}{n!} = \frac{t-1}{t - e^{(t-1)\,x}}. }[/math]
The Eulerian numbers [math]\displaystyle{ A(n,k) }[/math] may be defined as the coefficients of the Eulerian polynomials:
- [math]\displaystyle{ A_{n}(t) = \sum_{k=0}^n A(n,k)\,t^k. }[/math]
An explicit formula for [math]\displaystyle{ A(n,k) }[/math] is[1]
- [math]\displaystyle{ A(n,k)=\sum_{i=0}^{k}(-1)^i \binom{n+1}{i} (k+1-i)^n. }[/math]
Basic properties
- For fixed [math]\displaystyle{ n }[/math] there is a single permutation which has 0 ascents: [math]\displaystyle{ (n, n-1, n-2, \ldots, 1) }[/math]. Indeed, as [math]\displaystyle{ {\tbinom n 0}=1 }[/math] for all [math]\displaystyle{ n }[/math], [math]\displaystyle{ A(n, 0) = 1 }[/math]. This formally includes the empty collection of numbers, [math]\displaystyle{ n=0 }[/math]. And so [math]\displaystyle{ A_0(t)=A_1(t)=1 }[/math].
- For [math]\displaystyle{ k=1 }[/math] the explicit formula implies [math]\displaystyle{ A(n,1)=2^n-(n+1) }[/math], a sequence in [math]\displaystyle{ n }[/math] that reads [math]\displaystyle{ 0, 0, 1, 4, 11, 26, 57, \dots }[/math].
- Fully reversing a permutation with [math]\displaystyle{ k }[/math] ascents creates another permutation in which there are [math]\displaystyle{ n-k-1 }[/math] ascents. Therefore [math]\displaystyle{ A(n, k) = A(n, n-k-1) }[/math]. So there is also a single permutation which has [math]\displaystyle{ n-1 }[/math] ascents, namely the rising permutation [math]\displaystyle{ (1, 2, \ldots, n) }[/math]. So also [math]\displaystyle{ A(n, n-1) }[/math] equals [math]\displaystyle{ 1 }[/math].
- A lavish upper bound is [math]\displaystyle{ A(n, k) \le (k+1)^n\cdot(n+2)^k }[/math]. Between the bounds just discussed, the value exceeds [math]\displaystyle{ 1 }[/math].
- For [math]\displaystyle{ k\ge n \gt 0 }[/math], the values are formally zero, meaning many sums over [math]\displaystyle{ k }[/math] can be written with an upper index only up to [math]\displaystyle{ n-1 }[/math]. It also means that the polynomials [math]\displaystyle{ A_{n}(t) }[/math] are really of degree [math]\displaystyle{ n-1 }[/math] for [math]\displaystyle{ n\gt 0 }[/math].
A tabulation of the numbers in a triangular array is called the Euler triangle or Euler's triangle. It shares some common characteristics with Pascal's triangle. Values of [math]\displaystyle{ A(n, k) }[/math] (sequence A008292 in the OEIS) for [math]\displaystyle{ 0 \le n \le 9 }[/math] are:
- kn
0 1 2 3 4 5 6 7 8 0 1 1 1 2 1 1 3 1 4 1 4 1 11 11 1 5 1 26 66 26 1 6 1 57 302 302 57 1 7 1 120 1191 2416 1191 120 1 8 1 247 4293 15619 15619 4293 247 1 9 1 502 14608 88234 156190 88234 14608 502 1
Computation
For larger values of [math]\displaystyle{ n }[/math], [math]\displaystyle{ A(n,k) }[/math] can also be calculated using the recursive formula
- [math]\displaystyle{ A(n,k)=(n-k)\,A(n-1,k-1) + (k+1)\,A(n-1,k). }[/math]
This formula can be motivated from the combinatorial definition and thus serves as a natural starting point for the theory.
For small values of [math]\displaystyle{ n }[/math] and [math]\displaystyle{ k }[/math], the values of [math]\displaystyle{ A(n,k) }[/math] can be calculated by hand. For example
n k Permutations A(n, k) 1 0 (1) A(1,0) = 1 2 0 (2, 1) A(2,0) = 1 1 (1, 2) A(2,1) = 1 3 0 (3, 2, 1) A(3,0) = 1 1 (1, 3, 2), (2, 1, 3), (2, 3, 1) and (3, 1, 2) A(3,1) = 4 2 (1, 2, 3) A(3,2) = 1
Applying the recurrence to one example, we may find
- [math]\displaystyle{ A(4,1)=(4-1)\,A(3,0) + (1+1)\,A(3,1)=3 \cdot 1 + 2 \cdot 4 = 11. }[/math]
Likewise, the Eulerian polynomials can be computed by the recurrence
- [math]\displaystyle{ A_{0}(t) = 1, }[/math]
- [math]\displaystyle{ A_{n}(t) = A_{n-1}'(t)\cdot t\,(1-t) + A_{n-1}(t)\cdot (1+(n-1)\,t),\text{ for } n \gt 1. }[/math]
The second formula can be cast into an inductive form,
- [math]\displaystyle{ A_{n}(t) = \sum_{k=0}^{n-1} \binom{n}{k} A_{k}(t)\cdot (t-1)^{n-1-k}, \text{ for } n \gt 1. }[/math]
Identities
For any property partitioning a finite set into finitely many smaller sets, the sum of the cardinalities of the smaller sets equals the cardinality of the bigger set. The Eulerian numbers partition the permutations of [math]\displaystyle{ n }[/math] elements, so their sum equals the factorial [math]\displaystyle{ n! }[/math]. I.e.
- [math]\displaystyle{ \sum_{k=0}^{n-1} A(n,k) = n!, \text{ for }n \gt 0. }[/math]
as well as [math]\displaystyle{ A(0,0)=0! }[/math]. To avoid conflict with the empty sum convention, it is convenient to simply state the theorems for [math]\displaystyle{ n\gt 0 }[/math] only.
Much more generally, for a fixed function [math]\displaystyle{ f\colon \mathbb{R} \rightarrow \mathbb{C} }[/math] integrable on the interval [math]\displaystyle{ (0, n) }[/math][2]
- [math]\displaystyle{ \sum_{k=0}^{n-1} A(n, k)\, f(k) = n!\int_0^1 \cdots \int_0^1 f\left(\left\lfloor x_1 + \cdots + x_n\right\rfloor\right) {\mathrm d}x_1 \cdots {\mathrm d}x_n }[/math]
Worpitzky's identity[3] expresses [math]\displaystyle{ x^n }[/math] as the linear combination of Eulerian numbers with binomial coefficients:
- [math]\displaystyle{ \sum_{k=0}^{n-1}A(n,k)\binom{x+k}{n}=x^n. }[/math]
From it, it follows that
- [math]\displaystyle{ \sum_{k=1}^{m}k^n=\sum_{k=0}^{n-1} A(n,k) \binom{m+k+1}{n+1}. }[/math]
Formulas involving alternating sums
The alternating sum of the Eulerian numbers for a fixed value of [math]\displaystyle{ n }[/math] is related to the Bernoulli number [math]\displaystyle{ B_{n+1} }[/math]
- [math]\displaystyle{ \sum_{k=0}^{n-1}(-1)^k A(n,k) = 2^{n+1}(2^{n+1}-1) \frac{B_{n+1}}{n+1}, \text{ for }n \gt 0. }[/math]
Furthermore,
- [math]\displaystyle{ \sum_{k=0}^{n-1}(-1)^k \frac{A(n,k)}{\binom{n-1}{k}}=0, \text{ for }n \gt 1 }[/math]
and
- [math]\displaystyle{ \sum_{k=0}^{n-1}(-1)^k \frac{A(n,k)}{\binom{n}{k}}=(n+1)B_{n}, \text{ for } n \gt 1 }[/math]
Formulas involving the polynomials
The symmetry property implies:
- [math]\displaystyle{ A_n(t) = t^{n-1} A_n(t^{-1}) }[/math]
The Eulerian numbers are involved in the generating function for the sequence of nth powers:
- [math]\displaystyle{ \sum_{i=1}^\infty i^n x^i = \frac{1}{(1-x)^{n+1}}\sum_{k=0}^n A(n,k)\,x^{k+1} = \frac{x}{(1-x)^{n+1}}A_n(x) }[/math]
An explicit expression for Eulerian polynomials is [4]
[math]\displaystyle{ A_n(t) = \sum_{k=0}^n \left\{ {n \atop k} \right\} k! (t-1)^{n-k} }[/math]
Where [math]\displaystyle{ \left\{ {n \atop k} \right\} }[/math] is the Stirling numbers of the second kind.
Eulerian numbers of the second order
The permutations of the multiset [math]\displaystyle{ \{1, 1, 2, 2, \ldots, n, n\} }[/math] which have the property that for each k, all the numbers appearing between the two occurrences of k in the permutation are greater than k are counted by the double factorial number [math]\displaystyle{ (2n-1)!! }[/math]. The Eulerian number of the second order, denoted [math]\displaystyle{ \scriptstyle \left\langle \! \left\langle {n \atop m} \right\rangle \! \right\rangle }[/math], counts the number of all such permutations that have exactly m ascents. For instance, for n = 3 there are 15 such permutations, 1 with no ascents, 8 with a single ascent, and 6 with two ascents:
- 332211,
- 221133, 221331, 223311, 233211, 113322, 133221, 331122, 331221,
- 112233, 122133, 112332, 123321, 133122, 122331.
The Eulerian numbers of the second order satisfy the recurrence relation, that follows directly from the above definition:
- [math]\displaystyle{ \left\langle \!\! \left\langle {n \atop k} \right\rangle \!\! \right\rangle = (2n-k-1) \left\langle \!\! \left\langle {n-1 \atop k-1} \right\rangle \!\! \right\rangle + (k+1) \left\langle \!\! \left\langle {n-1 \atop k} \right\rangle \!\! \right\rangle, }[/math]
with initial condition for n = 0, expressed in Iverson bracket notation:
- [math]\displaystyle{ \left\langle \!\! \left\langle {0 \atop k} \right\rangle \!\! \right\rangle = [k=0]. }[/math]
Correspondingly, the Eulerian polynomial of second order, here denoted Pn (no standard notation exists for them) are
- [math]\displaystyle{ P_n(x) := \sum_{k=0}^n \left\langle \!\! \left\langle {n \atop k} \right\rangle \!\! \right\rangle x^k }[/math]
and the above recurrence relations are translated into a recurrence relation for the sequence Pn(x):
- [math]\displaystyle{ P_{n+1}(x) = (2nx+1) P_n(x) - x(x-1) P_n^\prime(x) }[/math]
with initial condition [math]\displaystyle{ P_0(x) = 1. }[/math]. The latter recurrence may be written in a somewhat more compact form by means of an integrating factor:
- [math]\displaystyle{ (x-1)^{-2n-2} P_{n+1}(x) = \left( x\,(1-x)^{-2n-1} P_n(x) \right)^\prime }[/math]
so that the rational function
- [math]\displaystyle{ u_n(x) := (x-1)^{-2n} P_{n}(x) }[/math]
satisfies a simple autonomous recurrence:
- [math]\displaystyle{ u_{n+1} = \left( \frac{x}{1-x} u_n \right)^\prime, \quad u_0=1 }[/math]
Whence one obtains the Eulerian polynomials of second order as [math]\displaystyle{ P_n(x) = (1-x)^{2n} u_n(x) }[/math], and the Eulerian numbers of second order as their coefficients.
The following table displays the first few second-order Eulerian numbers:
- kn
0 1 2 3 4 5 6 7 8 0 1 1 1 2 1 2 3 1 8 6 4 1 22 58 24 5 1 52 328 444 120 6 1 114 1452 4400 3708 720 7 1 240 5610 32120 58140 33984 5040 8 1 494 19950 195800 644020 785304 341136 40320 9 1 1004 67260 1062500 5765500 12440064 11026296 3733920 362880
The sum of the n-th row, which is also the value [math]\displaystyle{ P_n(1) }[/math], is [math]\displaystyle{ (2n-1)!! }[/math].
Indexing the second-order Eulerian numbers comes in three flavors:
- (sequence A008517 in the OEIS) following Riordan and Comtet,
- (sequence A201637 in the OEIS) following Graham, Knuth, and Patashnik,
- (sequence A340556 in the OEIS), extending the definition of Gessel and Stanley.
References
- Eulerus, Leonardus [Leonhard Euler] (1755). Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum [Foundations of differential calculus, with applications to finite analysis and series]. Academia imperialis scientiarum Petropolitana; Berolini: Officina Michaelis.
- Carlitz, L. (1959). "Eulerian Numbers and polynomials". Math. Mag. 32 (5): 247–260. doi:10.2307/3029225.
- Gould, H. W. (1978). "Evaluation of sums of convolved powers using Stirling and Eulerian Numbers". Fib. Quart. 16 (6): 488–497. https://www.fq.math.ca/16-6.html.
- Desarmenien, Jacques; Foata, Dominique (1992). "The signed Eulerian numbers". Discrete Math. 99 (1–3): 49–58. doi:10.1016/0012-365X(92)90364-L.
- Lesieur, Leonce; Nicolas, Jean-Louis (1992). "On the Eulerian Numbers M=max (A(n,k))". Europ. J. Combinat. 13 (5): 379–399. doi:10.1016/S0195-6698(05)80018-6.
- Butzer, P. L.; Hauss, M. (1993). "Eulerian numbers with fractional order parameters". Aequationes Mathematicae 46 (1–2): 119–142. doi:10.1007/bf01834003. http://resolver.sub.uni-goettingen.de/purl?GDZPPN002610515.
- Koutras, M.V. (1994). "Eulerian numbers associated with sequences of polynomials". Fib. Quart. 32 (1): 44. https://www.fq.math.ca/32-1.html.
- Graham; Knuth; Patashnik (1994). Concrete Mathematics: A Foundation for Computer Science (2nd ed.). Addison-Wesley. pp. 267–272.
- Hsu, Leetsch C.; Jau-Shyong Shiue, Peter (1999). "On certain summation problems and generalizations of Eulerian polynomials and numbers". Discrete Math. 204 (1–3): 237–247. doi:10.1016/S0012-365X(98)00379-3.
- Boyadzhiev, Khristo N. (2007). "Apostol-Bernoulli functions, derivative polynomials and Eulerian polynomials". arXiv:0710.1124 [math.CA].
- Petersen, T. Kyle (2015). Eulerian Numbers. Birkhäuser Advanced Texts Basler Lehrbücher. Birkhäuser. pp. 3–18. doi:10.1007/978-1-4939-3091-3_1. ISBN 978-1-4939-3090-6.
Citations
- ↑ (L. Comtet 1974, p. 243)
- ↑ Exercise 6.65 in Concrete Mathematics by Graham, Knuth and Patashnik.
- ↑ Worpitzky, J. (1883). "Studien über die Bernoullischen und Eulerschen Zahlen". Journal für die reine und angewandte Mathematik 94: 203–232. https://eudml.org/doc/148532.
- ↑ Qi, Feng; Guo, Bai-Ni (2017-08-01). "Explicit formulas and recurrence relations for higher order Eulerian polynomials". Indagationes Mathematicae 28 (4): 884–891. doi:10.1016/j.indag.2017.06.010. ISSN 0019-3577. https://www.sciencedirect.com/science/article/pii/S0019357717300605.
External links
- Eulerian Polynomials at OEIS Wiki.
- "Eulerian Numbers". MathPages.com. http://www.mathpages.com/home/kmath012/kmath012.htm.
- Weisstein, Eric W.. "Eulerian Number". http://mathworld.wolfram.com/EulerianNumber.html.
- Weisstein, Eric W.. "Euler's Number Triangle". http://mathworld.wolfram.com/EulersNumberTriangle.html.
- Weisstein, Eric W.. "Worpitzky's Identity". http://mathworld.wolfram.com/WorpitzkysIdentity.html.
- Weisstein, Eric W.. "Second-Order Eulerian Triangle". http://mathworld.wolfram.com/Second-OrderEulerianTriangle.html.
- Euler-matrix (generalized rowindexes, divergent summation)
Original source: https://en.wikipedia.org/wiki/Eulerian number.
Read more |