Exhaustion by compact subsets

From HandWiki

In mathematics, especially analysis, an exhaustion by compact subsets of a topological space [math]\displaystyle{ X }[/math] is a nested sequence of compact subsets [math]\displaystyle{ K_i }[/math] of [math]\displaystyle{ X }[/math] (i.e. [math]\displaystyle{ K_1\subseteq K_2\subseteq K_3\subseteq\cdots }[/math]), such that [math]\displaystyle{ K_i }[/math] is contained in the interior of [math]\displaystyle{ K_{i+1} }[/math] , i.e. [math]\displaystyle{ K_i\subseteq\text{int}(K_{i+1}) }[/math] for each [math]\displaystyle{ i }[/math] and [math]\displaystyle{ X=\bigcup_{i=1}^\infty K_i }[/math]. Sometimes the requirement that [math]\displaystyle{ K_i }[/math] is in the interior of [math]\displaystyle{ K_{i+1} }[/math] is dropped (and, in that case, the existence of an exhaustion by compact sets means the space is σ-compact space.)

For example, consider [math]\displaystyle{ X= {\mathbb R}^n }[/math] and the sequence of closed balls [math]\displaystyle{ K_i = \{ x : |x| \le i \} }[/math].

Application: paracompactness

An exhaustion by compact subsets can be used to show the space is paracompact.[citation needed]

Further reading

References

  • Leon Ehrenpreis, Theory of Distributions for Locally Compact Spaces, American Mathematical Society, 1982. ISBN:0-8218-1221-1.
  • John Lee, Introduction to Topological Manifolds, Springer Verlag, 2nd ed. 2011. ISBN:978-1441979391.

External links