Extreme set
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages)
(Learn how and when to remove this template message)
|

In mathematics, most commonly in convex geometry, an extreme set or face of a set in a vector space is a subset with the property that if for any two points some in-between point lies in , then we must have had .[1]
An extreme point of is a point for which is a face.[1]
An exposed face of is the subset of points of where a linear functional achieves its minimum on . Thus, if is a linear functional on and , then is an exposed face of .
An exposed point of is a point such that is an exposed face. That is, for all .
An exposed face is a face, but the converse is not true (see the figure). An exposed face of is convex if is convex. If is a face of , then is a face of if and only if is a face of .
Competing definitions
Some authors do not include and/or among the (exposed) faces. Some authors require and/or to be convex (else the boundary of a disc is a face of the disc, as well as any subset of the boundary) or closed. Some authors require the functional to be continuous in a given vector topology.
See also
References
- ↑ 1.0 1.1 Narici & Beckenstein 2011, pp. 275–339.
Bibliography
- Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
External links
- TOPOLOGICAL VECTOR SPACES AND CONTINUOUS LINEAR FUNCTIONALS, Chapter III of FUNCTIONAL ANALYSIS, Lawrence Baggett, University of Colorado Boulder.
- Functional Analysis, Peter Philip, Ludwig-Maximilians-universität München, 2024
