Fabius function

From HandWiki
Short description: Nowhere analytic, infinitely differentiable function
Graph of the Fabius function on the interval [0,1].
Extension of the function to the nonnegative real numbers.

In mathematics, the Fabius function is an example of an infinitely differentiable function that is nowhere analytic, found by Jaap Fabius (1966). It was also written down as the Fourier transform of

[math]\displaystyle{ \hat{f}(z) = \prod_{m=1}^\infty \left(\cos\frac{\pi z}{2^m}\right)^m }[/math]

by Børge Jessen and Aurel Wintner (1935).

The Fabius function is defined on the unit interval, and is given by the cumulative distribution function of

[math]\displaystyle{ \sum_{n=1}^\infty2^{-n}\xi_n, }[/math]

where the ξn are independent uniformly distributed random variables on the unit interval.

This function satisfies the initial condition [math]\displaystyle{ f(0) = 0 }[/math], the symmetry condition [math]\displaystyle{ f(1-x) = 1 - f(x) }[/math] for [math]\displaystyle{ 0 \le x \le 1, }[/math] and the functional differential equation [math]\displaystyle{ f'(x) = 2 f(2 x) }[/math] for [math]\displaystyle{ 0 \le x \le 1/2. }[/math] It follows that [math]\displaystyle{ f(x) }[/math] is monotone increasing for [math]\displaystyle{ 0 \le x \le 1, }[/math] with [math]\displaystyle{ f(1/2)=1/2 }[/math] and [math]\displaystyle{ f(1)=1. }[/math] There is a unique extension of f to the real numbers that satisfies the same differential equation for all x. This extension can be defined by f(x) = 0 for x ≤ 0, f(x + 1) = 1 − f(x) for 0 ≤ x ≤ 1, and f(x + 2r) = −f(x) for 0 ≤ x ≤ 2r with r a positive integer. The sequence of intervals within which this function is positive or negative follows the same pattern as the Thue–Morse sequence.

Values

The Fabius function is constant zero for all non-positive arguments, and assumes rational values at positive dyadic rational arguments.

References

  • Fabius, J. (1966), "A probabilistic example of a nowhere analytic C-function", Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 5 (2): 173–174, doi:10.1007/bf00536652 
  • Jessen, Børge; Wintner, Aurel (1935), "Distribution functions and the Riemann zeta function", Trans. Amer. Math. Soc. 38: 48–88, doi:10.1090/S0002-9947-1935-1501802-5 
  • Dimitrov, Youri (2006). Polynomially-divided solutions of bipartite self-differential functional equations (Thesis).
  • Arias de Reyna, Juan (2017). "Arithmetic of the Fabius function". arXiv:1702.06487 [math.NT].
  • Arias de Reyna, Juan (2017). "An infinitely differentiable function with compact support: Definition and properties". arXiv:1702.05442 [math.CA]. (an English translation of the author's paper published in Spanish in 1982)
  • Alkauskas, Giedrius (2001), "Dirichlet series associated with Thue-Morse sequence", preprint.
  • Rvachev, V. L., Rvachev, V. A., "Non-classical methods of the approximation theory in boundary value problems", Naukova Dumka, Kiev (1979) (in Russian).