Foster's theorem

From HandWiki

In probability theory, Foster's theorem, named after Gordon Foster,[1] is used to draw conclusions about the positive recurrence of Markov chains with countable state spaces. It uses the fact that positive recurrent Markov chains exhibit a notion of "Lyapunov stability" in terms of returning to any state while starting from it within a finite time interval.

Theorem

Consider an irreducible discrete-time Markov chain on a countable state space [math]\displaystyle{ S }[/math] having a transition probability matrix [math]\displaystyle{ P }[/math] with elements [math]\displaystyle{ p_{ij} }[/math] for pairs [math]\displaystyle{ i }[/math], [math]\displaystyle{ j }[/math] in [math]\displaystyle{ S }[/math]. Foster's theorem states that the Markov chain is positive recurrent if and only if there exists a Lyapunov function [math]\displaystyle{ V: S \to \mathbb{R} }[/math], such that [math]\displaystyle{ V(i) \geq 0 \text{ } \forall \text{ } i \in S }[/math] and

  1. [math]\displaystyle{ \sum_{j \in S}p_{ij}V(j) \lt {\infty} }[/math] for [math]\displaystyle{ i \in F }[/math]
  2. [math]\displaystyle{ \sum_{j \in S}p_{ij}V(j) \leq V(i) - \varepsilon }[/math] for all [math]\displaystyle{ i \notin F }[/math]

for some finite set [math]\displaystyle{ F }[/math] and strictly positive [math]\displaystyle{ \varepsilon }[/math].[2]

Related links

References

  1. Foster, F. G. (1953). "On the Stochastic Matrices Associated with Certain Queuing Processes". The Annals of Mathematical Statistics 24 (3): 355. doi:10.1214/aoms/1177728976. 
  2. Brémaud, P. (1999). "Lyapunov Functions and Martingales". Markov Chains. pp. 167. doi:10.1007/978-1-4757-3124-8_5. ISBN 978-1-4419-3131-3. https://archive.org/details/markovchainsgibb00brem_688.