Fuzzy differential inclusion

From HandWiki

Fuzzy differential inclusion is tha culmination of Fuzzy concept and Differential inclusion introduced by Lotfi A. Zadeh which became popular.[1][2] [math]\displaystyle{ x' (t) \epsilon [ f(t , x(t)]^\alpha }[/math] ,[math]\displaystyle{ x(0) \epsilon [x_0]^\alpha }[/math]

f(t,x(t)] is a fuzzy valued continuous function on euclidian space which is collection of all normal, upper semi-continuous, Convex set

,Compact space, supported fuzzy subsets of [math]\displaystyle{ R^n }[/math] .

Second order differential

The second order differential is

[math]\displaystyle{ x''(t) \epsilon [kx]^ \alpha }[/math] where [math]\displaystyle{ k \epsilon [K]^ \alpha }[/math]

K is trapezoidal fuzzy number (-1,-1/2,0,1/2)

[math]\displaystyle{ x_0 }[/math] is a trianglular fuzzy number (-1,0,1) .

Applications

Fuzzy differential inclusion (FDI) has applications in

References

  1. Lakshmikantham, V.; Mohapatra, Ram N. (11 September 2019). Theory of Fuzzy Differential Equations and Inclusions. ISBN 978-0-367-39532-2. https://www.routledge.com/Theory-of-Fuzzy-Differential-Equations-and-Inclusions/Lakshmikantham-Mohapatra/p/book/9780367395322. 
  2. Min, Chao; Liu, Zhi-bin; Zhang, Lie-hui; Huang, Nan-jing (2015). "On a System of Fuzzy Differential Inclusions". Filomat 29 (6): 1231–1244. doi:10.2298/FIL1506231M. ISSN 0354-5180. https://www.jstor.org/stable/24898205. 
  3. "Fuzzy differential inclusion in atmospheric and medical cybernetics". https://www.isibang.ac.in/~kaushik/kaushik_files/tumor.pdf. 
  4. Tafazoli, Sina; Menhaj, Mohammad Bagher (March 2009). "Fuzzy differential inclusion in neural modeling". 2009 IEEE Symposium on Computational Intelligence in Control and Automation. pp. 70–77. doi:10.1109/CICA.2009.4982785. ISBN 978-1-4244-2752-9. https://ieeexplore.ieee.org/document/4982785. 
  5. Min, Chao; Zhong, Yihua; Yang, Yan; Liu, Zhibin (May 2012). "On the implicit fuzzy differential inclusions". 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery. pp. 117–119. doi:10.1109/FSKD.2012.6234283. ISBN 978-1-4673-0024-7. https://ieeexplore.ieee.org/document/6234283. 
  6. Antonelli, Peter L.; Křivan, Vlastimil (1992). "Fuzzy differential inclusions as substitutes for stochastic differential equations in population biology". Open Systems & Information Dynamics 1 (2): 217–232. doi:10.1007/BF02228945.