Gaussian quantum Monte Carlo
From HandWiki
This article provides insufficient context for those unfamiliar with the subject.April 2019) (Learn how and when to remove this template message) ( |
Gaussian Quantum Monte Carlo is a quantum Monte Carlo method that shows a potential solution to the fermion sign problem without the deficiencies of alternative approaches. Instead of the Hilbert space, this method works in the space of density matrices that can be spanned by an over-complete basis of gaussian operators using only positive coefficients. Containing only quadratic forms of the fermionic operators, no anti-commuting variables occur and any quantum state can be expressed as a real probability distribution.[1][2]
References
- ↑ Corney, J. F.; Drummond, P. D. (2004-12-20). "Gaussian Quantum Monte Carlo Methods for Fermions and Bosons". Physical Review Letters 93 (26): 260401. doi:10.1103/PhysRevLett.93.260401. PMID 15697955. Bibcode: 2004PhRvL..93z0401C.
- ↑ Assaad, F. F.; Werner, P.; Corboz, P.; Gull, E.; Troyer, M. (2005-12-30). "Symmetry projection schemes for Gaussian Monte Carlo methods". Physical Review B 72 (22): 224518. doi:10.1103/PhysRevB.72.224518. Bibcode: 2005PhRvB..72v4518A.
Original source: https://en.wikipedia.org/wiki/Gaussian quantum Monte Carlo.
Read more |