Gisin–Hughston–Jozsa–Wootters theorem

From HandWiki

In quantum information theory and quantum optics, the Gisin–Hughston–Jozsa–Wootters (GHJW) theorem is a result about the realization of a mixed state of a quantum system as an ensemble of pure quantum states and the relation between the corresponding purifications of the density operators. The theorem is named after physicists and mathematicians Nicolas Gisin,[1] Lane P. Hughston, Richard Jozsa and William Wootters,[2] though much of it was established decades earlier by Erwin Schrödinger.[3] The result was also found independently by Nicolas Hadjisavvas building upon work by Ed Jaynes,[4][5] while a significant part of it was likewise independently discovered by N. David Mermin.[6] Thanks to its complicated history, it is also known as the HJW theorem and the Schrödinger–HJW theorem.

Purification of a mixed quantum state

Consider a mixed state [math]\displaystyle{ \rho=\sum_ip_i|\phi_i\rangle\langle\phi_i| }[/math] of the system [math]\displaystyle{ S }[/math], where the states [math]\displaystyle{ |\phi_i\rangle }[/math] are not assumed to be mutually orthogonal. We can add an auxiliary space [math]\displaystyle{ \mathcal{H}_A }[/math] with an orthonormal basis [math]\displaystyle{ \{|a_i\rangle\} }[/math], then the mixed state can be obtained as reduced density operator from the pure bipartite state

[math]\displaystyle{ |\Psi_{SA}\rangle=\sum_i\sqrt{p_i}|\phi_i\rangle|a_i\rangle. }[/math]

More precisely, [math]\displaystyle{ \rho=\mathrm{Tr}_A|\Psi_{SA}\rangle\langle\Psi_{SA}| }[/math]. The state [math]\displaystyle{ |\Psi_{SA}\rangle }[/math] is thus called the purification of [math]\displaystyle{ \rho }[/math]. Since the auxiliary space and the basis can be chosen arbitrarily, the purification of a mixed state is not unique; in fact, there are infinitely many purifications of a given mixed state.

GHJW theorem

Consider a mixed quantum state [math]\displaystyle{ \rho }[/math] with two different realizations as ensemble of pure states as [math]\displaystyle{ \rho=\sum_ip_i|\phi_i\rangle\langle\phi_i| }[/math] and [math]\displaystyle{ \rho=\sum_jq_j|\varphi_j\rangle\langle\varphi_j| }[/math]. Here both [math]\displaystyle{ |\phi_i\rangle }[/math]and [math]\displaystyle{ |\varphi_j\rangle }[/math] are not assumed to be mutually orthogonal. There will be two corresponding purifications of the mixed state [math]\displaystyle{ \rho }[/math] reading as follows:

Purification 1: [math]\displaystyle{ |\Psi_{SA}^1\rangle=\sum_i\sqrt{p_i}|\phi_i\rangle|a_i\rangle }[/math];
Purification 2: [math]\displaystyle{ |\Psi_{SA}^2\rangle=\sum_j\sqrt{q_j}|\varphi_j\rangle|b_j\rangle }[/math].

The sets [math]\displaystyle{ \{|a_i\rangle\} }[/math]and [math]\displaystyle{ \{|b_j\rangle\} }[/math] are two collections of orthonormal bases of the respective auxiliary spaces. These two purifications only differ by a unitary transformation acting on the auxiliary space, viz., there exists a unitary matrix [math]\displaystyle{ U_A }[/math]such that [math]\displaystyle{ |\Psi^1_{SA}\rangle=I\otimes U_A|\Psi^2_{SA}\rangle }[/math].[7] Therefore, [math]\displaystyle{ |\Psi_{SA}^1\rangle=\sum_j\sqrt{q_j}|\varphi_i\rangle\otimes U_A|b_j\rangle }[/math], which means that we can realize the different ensembles of a mixed state just by choosing to measure different observables of one given purification.

References

  1. Gisin, N. (1984-05-07). "Quantum Measurements and Stochastic Processes". Physical Review Letters 52 (19): 1657–1660. doi:10.1103/physrevlett.52.1657. ISSN 0031-9007. Bibcode1984PhRvL..52.1657G. 
  2. Hughston, Lane P.; Jozsa, Richard; Wootters, William K. (November 1993). "A complete classification of quantum ensembles having a given density matrix". Physics Letters A 183 (1): 14–18. doi:10.1016/0375-9601(93)90880-9. ISSN 0375-9601. Bibcode1993PhLA..183...14H. 
  3. Schrödinger, Erwin (1936). "Probability relations between separated systems". Proceedings of the Cambridge Philosophical Society 32 (3): 446–452. doi:10.1017/S0305004100019137. Bibcode1936PCPS...32..446S. 
  4. Hadjisavvas, Nicolas (1981). "Properties of mixtures on non-orthogonal states". Letters in Mathematical Physics 5 (4): 327–332. doi:10.1007/BF00401481. Bibcode1981LMaPh...5..327H. 
  5. Jaynes, E. T. (1957). "Information theory and statistical mechanics. II". Physical Review 108 (2): 171–190. doi:10.1103/PhysRev.108.171. Bibcode1957PhRv..108..171J. 
  6. Fuchs, Christopher A. (2011). Coming of Age with Quantum Information: Notes on a Paulian Idea. Cambridge: Cambridge University Press. ISBN 978-0-521-19926-1. OCLC 535491156. 
  7. Kirkpatrick, K. A. (February 2006). "The Schrödinger-HJW Theorem". Foundations of Physics Letters 19 (1): 95–102. doi:10.1007/s10702-006-1852-1. ISSN 0894-9875. Bibcode2006FoPhL..19...95K.