Graph product

From HandWiki

In mathematics, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G1 and G2 and produces a graph H with the following properties:

  • The vertex set of H is the Cartesian product V(G1) × V(G2), where V(G1) and V(G2) are the vertex sets of G1 and G2, respectively.
  • Two vertices (u1u2) and (v1v2) of H are connected by an edge if and only if the vertices u1, u2, v1, v2 satisfy a condition that takes into account the edges of G1 and G2. The graph products differ in exactly which this condition is.

The terminology and notation for specific graph products in the literature varies quite a lot; even if the following may be considered somewhat standard, readers are advised to check what definition a particular author uses for a graph product, especially in older texts.

Overview table

The following table shows the most common graph products, with [math]\displaystyle{ \sim }[/math] denoting “is connected by an edge to”, and [math]\displaystyle{ \not\sim }[/math] denoting non-connection. The operator symbols listed here are by no means standard, especially in older papers.

Name Condition for [math]\displaystyle{ (u_1,u_2)\sim(v_1,v_2) }[/math] Number of edges
[math]\displaystyle{ \begin{array}{cc} n_1 = \vert\mathrm{V}(G_1)\vert & n_2 = \vert\mathrm{V}(G_2)\vert \\ m_1 = \vert\mathrm{E}(G_1)\vert & m_2 = \vert\mathrm{E}(G_2)\vert \end{array} }[/math]
Example
Cartesian product
[math]\displaystyle{ G 1 \square G 2 }[/math]
[math]\displaystyle{ u_1 }[/math] = [math]\displaystyle{ v_1 }[/math] and [math]\displaystyle{ u_2 }[/math] [math]\displaystyle{ \sim }[/math] [math]\displaystyle{ v_2 }[/math] )
or

[math]\displaystyle{ u_1 }[/math] [math]\displaystyle{ \sim }[/math] [math]\displaystyle{ v_1 }[/math] and [math]\displaystyle{ u_2 }[/math] = [math]\displaystyle{ v_2 }[/math] )

[math]\displaystyle{ m_2 n_1 + m_1 n_2 }[/math] Graph-Cartesian-product.svg
Tensor product
(Kronecker product,
categorical product)
[math]\displaystyle{ G_1 \times G_2 }[/math]
[math]\displaystyle{ u_1 }[/math] [math]\displaystyle{ \sim }[/math] [math]\displaystyle{ v_1 }[/math] and  [math]\displaystyle{ u_2 }[/math] [math]\displaystyle{ \sim }[/math] [math]\displaystyle{ v_2 }[/math] [math]\displaystyle{ 2 m_1 m_2 }[/math] Graph-tensor-product.svg
Lexicographical product
[math]\displaystyle{ G_1 \cdot G_2 }[/math] or [math]\displaystyle{ G_1[G_2] }[/math]
u1 ∼ v1
or
u1 = v1 and u2 ∼ v2 )
[math]\displaystyle{ m_2 n_1 + m_1 n_2^2 }[/math] Graph-lexicographic-product.svg
Strong product
(Normal product,
AND product)
[math]\displaystyle{ G_1 \boxtimes G_2 }[/math]
u1 = v1 and u2 ∼ v2 )
or
u1 ∼ v1 and u2 = v2 )
or
u1 ∼ v1 and u2 ∼ v2 )
[math]\displaystyle{ n_1 m_2 + n_2 m_1 + 2 m_1 m_2 }[/math]
Co-normal product
(disjunctive product, OR product)
[math]\displaystyle{ G_1 * G_2 }[/math]
u1 ∼ v1
or
u2 ∼ v2
Modular product [math]\displaystyle{ (u_1 \sim v_1 \text{ and } u_2 \sim v_2) }[/math]
or

[math]\displaystyle{ (u_1 \not\sim v_1 \text{ and } u_2 \not\sim v_2) }[/math]

Rooted product see article [math]\displaystyle{ m_2 n_1 + m_1 }[/math] File:Graph-rooted-product.svg
Zig-zag product see article see article see article
Replacement product
Homomorphic product[1][3]
[math]\displaystyle{ G_1 \ltimes G_2 }[/math]
[math]\displaystyle{ (u_1 = v_1) }[/math]
or
[math]\displaystyle{ (u_1 \sim v_1 \text{ and } u_2 \not\sim v_2) }[/math]

In general, a graph product is determined by any condition for (u1u2) ∼ (v1v2) that can be expressed in terms of the statements u1 ∼ v1, u2 ∼ v2, u1 = v1, and u2 = v2.

Mnemonic

Let [math]\displaystyle{ K_2 }[/math] be the complete graph on two vertices (i.e. a single edge). The product graphs [math]\displaystyle{ K_2 \square K_2 }[/math], [math]\displaystyle{ K_2 \times K_2 }[/math], and [math]\displaystyle{ K_2 \boxtimes K_2 }[/math] look exactly like the graph representing the operator. For example, [math]\displaystyle{ K_2 \square K_2 }[/math] is a four cycle (a square) and [math]\displaystyle{ K_2 \boxtimes K_2 }[/math] is the complete graph on four vertices. The [math]\displaystyle{ G_1[G_2] }[/math] notation for lexicographic product serves as a reminder that this product is not commutative.

See also

Notes

  1. 1.0 1.1 Roberson, David E.; Mancinska, Laura (2012). "Graph Homomorphisms for Quantum Players". Journal of Combinatorial Theory, Series B 118: 228–267. doi:10.1016/j.jctb.2015.12.009. 
  2. Bačík, R.; Mahajan, S. (1995). "Semidefinite programming and its applications to NP problems". Computing and Combinatorics. Lecture Notes in Computer Science. 959. pp. 566. doi:10.1007/BFb0030878. ISBN 978-3-540-60216-3. 
  3. The hom-product of [2] is the graph complement of the homomorphic product of.[1]

References

  • Imrich, Wilfried; Klavžar, Sandi (2000). Product Graphs: Structure and Recognition. Wiley. ISBN 978-0-471-37039-0{{inconsistent citations}} .