Great stellated truncated dodecahedron

From HandWiki
Short description: Polyhedron with 32 faces


Great stellated truncated dodecahedron
Great stellated truncated dodecahedron.png
Type Uniform star polyhedron
Elements F = 32, E = 90
V = 60 (χ = 2)
Faces by sides 20{3}+12{10/3}
Wythoff symbol 2 3 | 5/3
Symmetry group Ih, [5,3], *532
Index references U66, C83, W104
Dual polyhedron Great triakis icosahedron
Vertex figure Great stellated truncated dodecahedron vertfig.png
3.10/3.10/3
Bowers acronym Quit Gissid

File:Great stellated truncated dodecahedron.stl

In geometry, the great stellated truncated dodecahedron (or quasitruncated great stellated dodecahedron or great stellatruncated dodecahedron) is a nonconvex uniform polyhedron, indexed as U66. It has 32 faces (20 triangles and 12 decagrams), 90 edges, and 60 vertices.[1] It is given a Schläfli symbol t0,1{5/3,3}.

Related polyhedra

It shares its vertex arrangement with three other uniform polyhedra: the small icosicosidodecahedron, the small ditrigonal dodecicosidodecahedron, and the small dodecicosahedron:

Great stellated truncated dodecahedron.png
Great stellated truncated dodecahedron
Small icosicosidodecahedron.png
Small icosicosidodecahedron
Small ditrigonal dodecicosidodecahedron.png
Small ditrigonal dodecicosidodecahedron
Small dodecicosahedron.png
Small dodecicosahedron

Cartesian coordinates

Cartesian coordinates for the vertices of a great stellated truncated dodecahedron are all the even permutations of [math]\displaystyle{ \begin{array}{crclc} \Bigl(& 0,& \pm\,\varphi,& \pm \bigl[2-\frac{1}{\varphi}\bigr] &\Bigr) \\ \Bigl(& \pm\,\varphi,& \pm\,\frac{1}{\varphi},& \pm\,\frac{2}{\varphi} &\Bigr) \\ \Bigl(& \pm\,\frac{1}{\varphi^2},& \pm\,\frac{1}{\varphi},& \pm\,2 &\Bigr) \end{array} }[/math]

where [math]\displaystyle{ \varphi = \tfrac{1+\sqrt 5}{2} }[/math] is the golden ratio.

See also

References

External links