Griewank function

From HandWiki
First order Griewank function

In mathematics, the Griewank function is often used in testing of optimization. It is defined as follows:[1]

[math]\displaystyle{ 1+ \frac {1}{4000} \sum _{i=1}^n x_i^2 -\prod _{i=1}^n \cos \left( \frac {x_i}{\sqrt {i}} \right) }[/math]

The following paragraphs display the special cases of first, second and third order Griewank function, and their plots.

First-order Griewank function

[math]\displaystyle{ g := 1+(1/4000)\cdot x_1^2-\cos(x_1) }[/math]

The first order Griewank function has multiple maxima and minima.[2]

Let the derivative of Griewank function be zero:

[math]\displaystyle{ \frac{1}{2000} \cdot x_1+\sin(x_1) = 0 }[/math]

Find its roots in the interval [−100..100] by means of numerical method,

In the interval [−10000,10000], the Griewank function has 6365 critical points.

Second-order Griewank function

2nd order Griewank function 3D plot
2nd-order Griewank function contour plot
[math]\displaystyle{ 1+\frac {1}{4000} x_1^2 + \frac {1}{4000} x_2^2- \cos(x_1) \cos \left( \frac 1 2 x_2\sqrt {2} \right) }[/math]

Third order Griewank function

Third-order Griewank function Maple animation
[math]\displaystyle{ \left\{ 1+\frac {1}{4000}\,x_1^2 + \frac {1}{4000}\,x_2^2 + \frac {1}{4000}\,{x_{{3}}}^{2}-\cos(x_1) \cos \left( \frac 1 2 x_2 \sqrt {2} \right) \cos \left( \frac 1 3 x_3 \sqrt {3} \right) \right\} }[/math]

References

  1. Griewank, A. O. "Generalized Descent for Global Optimization." J. Opt. Th. Appl. 34, 11–39, 1981
  2. Locatelli, M. "A Note on the Griewank Test Function." J. Global Opt. 25, 169–174, 2003