Hadamard manifold

From HandWiki

In mathematics, a Hadamard manifold, named after Jacques Hadamard — more often called a Cartan–Hadamard manifold, after Élie Cartan — is a Riemannian manifold [math]\displaystyle{ (M, g) }[/math] that is complete and simply connected and has everywhere non-positive sectional curvature.[1][2] By Cartan–Hadamard theorem all Cartan–Hadamard manifolds are diffeomorphic to the Euclidean space [math]\displaystyle{ \mathbb{R}^n. }[/math] Furthermore it follows from the Hopf–Rinow theorem that every pairs of points in a Cartan–Hadamard manifold may be connected by a unique geodesic segment. Thus Cartan–Hadamard manifolds are some of the closest relatives of [math]\displaystyle{ \mathbb{R}^n. }[/math]

Examples

The Euclidean space [math]\displaystyle{ \mathbb{R}^n }[/math] with its usual metric is a Cartan–Hadamard manifold with constant sectional curvature equal to [math]\displaystyle{ 0. }[/math]

Standard [math]\displaystyle{ n }[/math]-dimensional hyperbolic space [math]\displaystyle{ \mathbb{H}^n }[/math] is a Cartan–Hadamard manifold with constant sectional curvature equal to [math]\displaystyle{ -1. }[/math]

Properties

In Cartan-Hadamard manifolds, the map [math]\displaystyle{ \exp_p : \operatorname{T}M_p \to M }[/math] is a diffeomorphism for all [math]\displaystyle{ p \in M. }[/math]

See also

References

  1. Li, Peter (2012). Geometric Analysis. Cambridge University Press. pp. 381. doi:10.1017/CBO9781139105798. ISBN 9781107020641. 
  2. Lang, Serge (1989). Fundamentals of Differential Geometry, Volume 160. Springer. pp. 252–253. ISBN 9780387985930.