Hahn–Exton q-Bessel function
In mathematics, the Hahn–Exton q-Bessel function or the third Jackson q-Bessel function is a q-analog of the Bessel function, and satisfies the Hahn-Exton q-difference equation (Swarttouw (1992)). This function was introduced by Hahn (1953) in a special case and by Exton (1983) in general.
The Hahn–Exton q-Bessel function is given by
- [math]\displaystyle{ J_\nu^{(3)}(x;q) = \frac{x^\nu(q^{\nu+1};q)_\infty}{(q;q)_\infty} \sum_{k\ge 0}\frac{(-1)^kq^{k(k+1)/2}x^{2k}}{(q^{\nu+1};q)_k(q;q)_k}= \frac{(q^{\nu+1};q)_\infty}{(q;q)_\infty} x^\nu {}_1\phi_1(0;q^{\nu+1};q,qx^2). }[/math]
[math]\displaystyle{ \phi }[/math] is the basic hypergeometric function.
Properties
Zeros
Koelink and Swarttouw proved that [math]\displaystyle{ J_\nu^{(3)}(x;q) }[/math] has infinite number of real zeros. They also proved that for [math]\displaystyle{ \nu\gt -1 }[/math] all non-zero roots of [math]\displaystyle{ J_\nu^{(3)}(x;q) }[/math] are real (Koelink and Swarttouw (1994)). For more details, see (Abreu Bustoz). Zeros of the Hahn-Exton q-Bessel function appear in a discrete analog of Daniel Bernoulli's problem about free vibrations of a lump loaded chain ((Hahn 1953), (Exton 1983))
Derivatives
For the (usual) derivative and q-derivative of [math]\displaystyle{ J_\nu^{(3)}(x;q) }[/math], see Koelink and Swarttouw (1994). The symmetric q-derivative of [math]\displaystyle{ J_\nu^{(3)}(x;q) }[/math] is described on Cardoso (2016).
Recurrence Relation
The Hahn–Exton q-Bessel function has the following recurrence relation (see Swarttouw (1992)):
- [math]\displaystyle{ J_{\nu+1}^{(3)}(x;q)=\left(\frac{1-q^\nu}{x}+x\right)J_\nu^{(3)}(x;q)-J_{\nu-1}^{(3)}(x;q). }[/math]
Alternative Representations
Integral Representation
The Hahn–Exton q-Bessel function has the following integral representation (see Ismail and Zhang (2018)):
- [math]\displaystyle{ J_{\nu}^{(3)}(z;q)=\frac{z^\nu}{\sqrt{\pi\log q^{-2}}}\int_{-\infty}^{\infty}\frac{\exp\left(\frac{x^2}{\log q^2}\right)}{(q,-q^{\nu+1/2}e^{ix},-q^{1/2}z^2e^{ix};q)_{\infty}}\,dx. }[/math]
- [math]\displaystyle{ (a_1,a_2,\cdots,a_n;q)_{\infty}:=(a_1;q)_{\infty}(a_2;q)_{\infty}\cdots(a_n;q)_{\infty}. }[/math]
Hypergeometric Representation
The Hahn–Exton q-Bessel function has the following hypergeometric representation (see Daalhuis (1994)):
- [math]\displaystyle{ J_{\nu}^{(3)}(x;q)=x^{\nu}\frac{(x^2 q;q)_{\infty}}{(q;q)_{\infty}}\ _1\phi_1(0;x^2 q;q,q^{\nu+1}). }[/math]
This converges fast at [math]\displaystyle{ x\to\infty }[/math]. It is also an asymptotic expansion for [math]\displaystyle{ \nu\to\infty }[/math].
References
- Abreu, L. D.; Bustoz, J.; Cardoso, J. L. (2003), "The Roots of the Third Jackson q-Bessel Function.", International Journal of Mathematics and Mathematical Sciences 2003 (67): 4241–4248, doi:10.1155/S016117120320613X
- Cardoso, J. L. (2016), "A Few Properties of the Third Jackson q-Bessel Function.", Analysis Mathematica 42 (4): 323–337, doi:10.1007/s10476-016-0402-8
- Daalhuis, A. B. O. (1994), "Asymptotic Expansions for q-Gamma, q-Exponential, and q-Bessel functions.", Journal of Mathematical Analysis and Applications 186 (3): 896–913, doi:10.1006/jmaa.1994.1339, https://ir.cwi.nl/pub/2248
- Exton, Harold (1983), q-hypergeometric functions and applications, Ellis Horwood Series: Mathematics and its Applications, Chichester: Ellis Horwood Ltd., ISBN 978-0-85312-491-7, https://books.google.com/books?id=3kHvAAAAMAAJ
- Hahn, Wolfgang (1953), "Die mechanische Deutung einer geometrischen Differenzengleichung" (in German), Zeitschrift für Angewandte Mathematik und Mechanik 33 (8–9): 270–272, doi:10.1002/zamm.19530330811, ISSN 0044-2267, Bibcode: 1953ZaMM...33..270H
- Ismail, M. E. H.; Zhang, R. (2018), "Integral and Series Representations of q-Polynomials and Functions: Part I", Analysis and Applications 16 (2): 209–281, doi:10.1142/S0219530517500129
- Koelink, H. T.; Swarttouw, René F. (1994), "On the zeros of the Hahn-Exton q-Bessel function and associated q-Lommel polynomials", Journal of Mathematical Analysis and Applications 186 (3): 690–710, doi:10.1006/jmaa.1994.1327, Bibcode: 1997math......3215K
- Swarttouw, René F. (1992), "An addition theorem and some product formulas for the Hahn-Exton q-Bessel functions", Canadian Journal of Mathematics 44 (4): 867–879, doi:10.4153/CJM-1992-052-6, ISSN 0008-414X
- Swarttouw, René F. (1992), "The Hahn-Exton q-Bessel function", PHD Thesis, Delft Technical University, https://repository.tudelft.nl/islandora/object/uuid%3A0bfd7d96-bb29-4846-8023-6242ce15e18f?collection=research
Original source: https://en.wikipedia.org/wiki/Hahn–Exton q-Bessel function.
Read more |