Jackson q-Bessel function

From HandWiki

In mathematics, a Jackson q-Bessel function (or basic Bessel function) is one of the three q-analogs of the Bessel function introduced by Jackson (1906a, 1906b, 1905a, 1905b). The third Jackson q-Bessel function is the same as the Hahn–Exton q-Bessel function.

Definition

The three Jackson q-Bessel functions are given in terms of the q-Pochhammer symbol and the basic hypergeometric function ϕ by

Jν(1)(x;q)=(qν+1;q)(q;q)(x/2)ν2ϕ1(0,0;qν+1;q,x2/4),|x|<2,
Jν(2)(x;q)=(qν+1;q)(q;q)(x/2)ν0ϕ1(;qν+1;q,x2qν+1/4),x,
Jν(3)(x;q)=(qν+1;q)(q;q)(x/2)ν1ϕ1(0;qν+1;q,qx2/4),x.

They can be reduced to the Bessel function by the continuous limit:

limq1Jν(k)(x(1q);q)=Jν(x), k=1,2,3.

There is a connection formula between the first and second Jackson q-Bessel function ((Gasper Rahman)):

Jν(2)(x;q)=(x2/4;q)Jν(1)(x;q), |x|<2.

For integer order, the q-Bessel functions satisfy

Jn(k)(x;q)=(1)nJn(k)(x;q), n, k=1,2,3.

Properties

Negative Integer Order

By using the relations ((Gasper Rahman)):

(qm+1;q)=(qm+n+1;q)(qm+1;q)n,
(q;q)m+n=(q;q)m(qm+1;q)n, m,n,

we obtain

Jn(k)(x;q)=(1)nJn(k)(x;q), k=1,2.

Zeros

Hahn mentioned that Jν(2)(x;q) has infinitely many real zeros (Hahn (1949)). Ismail proved that for ν>1 all non-zero roots of Jν(2)(x;q) are real (Ismail (1982)).

Ratio of q-Bessel Functions

The function ix1/2Jν+1(2)(ix1/2;q)/Jν(2)(ix1/2;q) is a completely monotonic function (Ismail (1982)).

Recurrence Relations

The first and second Jackson q-Bessel function have the following recurrence relations (see (Ismail 1982) and (Gasper Rahman)):

qνJν+1(k)(x;q)=2(1qν)xJν(k)(x;q)Jν1(k)(x;q), k=1,2.
Jν(1)(xq;q)=q±ν/2(Jν(1)(x;q)±x2Jν±1(1)(x;q)).

Inequalities

When ν>1, the second Jackson q-Bessel function satisfies: |Jν(2)(z;q)|(q;q)(q;q)(|z|2)νexp{log(|z|2qν/4)2logq}. (see Zhang (2006).)

For n, |Jn(2)(z;q)|(qn+1;q)(q;q)(|z|2)n(|z|2;q). (see Koelink (1993).)

Generating Function

The following formulas are the q-analog of the generating function for the Bessel function (see (Gasper Rahman)):

n=tnJn(2)(x;q)=(x2/4;q)eq(xt/2)eq(x/2t),
n=tnJn(3)(x;q)=eq(xt/2)Eq(qx/2t).

eq is the q-exponential function.

Alternative Representations

Integral Representations

The second Jackson q-Bessel function has the following integral representations (see (Rahman 1987) and (Ismail Zhang)):

Jν(2)(x;q)=(q2ν;q)2π(qν;q)(x/2)ν0π(e2iθ,e2iθ,ixq(ν+1)/22eiθ,ixq(ν+1)/22eiθ;q)(e2iθqν,e2iθqν;q)dθ,
(a1,a2,,an;q):=(a1;q)(a2;q)(an;q), ν>0,

where (a;q)is the q-Pochhammer symbol. This representation reduces to the integral representation of the Bessel function in the limit q1.

Jν(2)(z;q)=(z/2)ν2πlogq1(qν+1/2z2eix4;q)exp(x2logq2)(q,qν+1/2eix;q)dx.

Hypergeometric Representations

The second Jackson q-Bessel function has the following hypergeometric representations (see Koelink (1993), Chen, Ismail, and Muttalib (1994)):

Jν(2)(x;q)=(x/2)ν(q;q) 1ϕ1(x2/4;0;q,qν+1),
Jν(2)(x;q)=(x/2)ν(q;q)2(q;q)[f(x/2,q(ν+1/2)/2;q)+f(x/2,q(ν+1/2)/2;q)], f(x,a;q):=(iax;q) 3ϕ2(a,a,0q,iax;q,q).

An asymptotic expansion can be obtained as an immediate consequence of the second formula.

For other hypergeometric representations, see (Rahman 1987).

Modified q-Bessel Functions

The q-analog of the modified Bessel functions are defined with the Jackson q-Bessel function ((Ismail 1981) and (Olshanetsky Rogov)):

Iν(j)(x;q)=eiνπ/2Jν(j)(x;q), j=1,2.
Kν(j)(x;q)=π2sin(πν){Iν(j)(x;q)Iν(j)(x;q)}, j=1,2, ν,
Kn(j)(x;q)=limνnKν(j)(x;q), n.

There is a connection formula between the modified q-Bessel functions:

Iν(2)(x;q)=(x2/4;q)Iν(1)(x;q).

Recurrence Relations

By the recurrence relation of Jackson q-Bessel functions and the definition of modified q-Bessel functions, the following recurrence relation can be obtained (Kν(j)(x;q) also satisfies the same relation) ((Ismail 1981)):

qνIν+1(j)(x;q)=2z(1qν)Iν(j)(x;q)+Iν1(j)(x;q), j=1,2.

For other recurrence relations, see (Olshanetsky Rogov).

Continued Fraction Representation

The ratio of modified q-Bessel functions form a continued fraction ((Ismail 1981)):

Iν(2)(z;q)Iν1(2)(z;q)=12(1qν)/z+qν2(1qν+1)/z+qν+12(1qν+2)/z+.

Alternative Representations

Hypergeometric Representations

The function Iν(2)(z;q) has the following representation ((Ismail Zhang)):

Iν(2)(z;q)=(z/2)ν(q,q)1ϕ1(z2/4;0;q,qν+1).

Integral Representations

The modified q-Bessel functions have the following integral representations ((Ismail 1981)):

Iν(2)(z;q)=(z2/4;q)(1π0πcosνθdθ(eiθz/2;q)(eiθz/2;q)sinνππ0eνtdt(etz/2;q)(etz/2;q)),
Kν(1)(z;q)=120eνtdt(et/2z/2;q)(et/2z/2;q), |argz|<π/2,
Kν(1)(z;q)=0coshνdt(et/2z/2;q)(et/2z/2;q).

See also

References