Hasse–Davenport relation
The Hasse–Davenport relations, introduced by Davenport and Hasse (1935), are two related identities for Gauss sums, one called the Hasse–Davenport lifting relation, and the other called the Hasse–Davenport product relation. The Hasse–Davenport lifting relation is an equality in number theory relating Gauss sums over different fields. (Weil 1949) used it to calculate the zeta function of a Fermat hypersurface over a finite field, which motivated the Weil conjectures.
Gauss sums are analogues of the gamma function over finite fields, and the Hasse–Davenport product relation is the analogue of Gauss's multiplication formula
- [math]\displaystyle{ \Gamma(z) \; \Gamma\left(z + \frac{1}{k}\right) \; \Gamma\left(z + \frac{2}{k}\right) \cdots \Gamma\left(z + \frac{k-1}{k}\right) = (2 \pi)^{ \frac{k-1}{2}} \; k^{1/2 - kz} \; \Gamma(kz). \,\! }[/math]
In fact the Hasse–Davenport product relation follows from the analogous multiplication formula for p-adic gamma functions together with the Gross–Koblitz formula of (Gross Koblitz).
Hasse–Davenport lifting relation
Let F be a finite field with q elements, and Fs be the field such that [Fs:F] = s, that is, s is the dimension of the vector space Fs over F.
Let [math]\displaystyle{ \alpha }[/math] be an element of [math]\displaystyle{ F_s }[/math].
Let [math]\displaystyle{ \chi }[/math] be a multiplicative character from F to the complex numbers.
Let [math]\displaystyle{ N_{F_s/F}(\alpha) }[/math] be the norm from [math]\displaystyle{ F_s }[/math] to [math]\displaystyle{ F }[/math] defined by
- [math]\displaystyle{ N_{F_s/F}(\alpha):=\alpha\cdot\alpha^q\cdots\alpha^{q^{s-1}}.\, }[/math]
Let [math]\displaystyle{ \chi' }[/math] be the multiplicative character on [math]\displaystyle{ F_s }[/math] which is the composition of [math]\displaystyle{ \chi }[/math] with the norm from Fs to F, that is
- [math]\displaystyle{ \chi'(\alpha):=\chi(N_{F_s/F}(\alpha)) }[/math]
Let ψ be some nontrivial additive character of F, and let [math]\displaystyle{ \psi' }[/math] be the additive character on [math]\displaystyle{ F_s }[/math] which is the composition of [math]\displaystyle{ \psi }[/math] with the trace from Fs to F, that is
- [math]\displaystyle{ \psi'(\alpha):=\psi(Tr_{F_s/F}(\alpha)) }[/math]
Let
- [math]\displaystyle{ \tau(\chi,\psi)=\sum_{x\in F}\chi(x)\psi(x) }[/math]
be the Gauss sum over F, and let [math]\displaystyle{ \tau(\chi',\psi') }[/math] be the Gauss sum over [math]\displaystyle{ F_s }[/math].
Then the Hasse–Davenport lifting relation states that
- [math]\displaystyle{ (-1)^s\cdot \tau(\chi,\psi)^s=-\tau(\chi',\psi'). }[/math]
Hasse–Davenport product relation
The Hasse–Davenport product relation states that
- [math]\displaystyle{ \prod_{a\bmod m} \tau(\chi\rho^a,\psi) = -\chi^{-m}(m)\tau(\chi^m,\psi)\prod_{a\bmod m} \tau(\rho^a,\psi) }[/math]
where ρ is a multiplicative character of exact order m dividing q–1 and χ is any multiplicative character and ψ is a non-trivial additive character.
References
- Davenport, Harold; Hasse, Helmut (1935), "Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen. (On the zeros of the congruence zeta-functions in some cyclic cases)" (in German), Journal für die Reine und Angewandte Mathematik 172: 151–182, ISSN 0075-4102, http://resolver.sub.uni-goettingen.de/purl?GDZPPN002173123
- Gross, Benedict H.; Koblitz, Neal (1979), "Gauss sums and the p-adic Γ-function", Annals of Mathematics, Second Series 109 (3): 569–581, doi:10.2307/1971226, ISSN 0003-486X
- Ireland, Kenneth; Rosen, Michael (1990). A Classical Introduction to Modern Number Theory. Springer. pp. 158–162. ISBN 978-0-387-97329-6. https://archive.org/details/classicalintrodu00irel.
- Weil, André (1949), "Numbers of solutions of equations in finite fields", Bulletin of the American Mathematical Society 55 (5): 497–508, doi:10.1090/S0002-9904-1949-09219-4, ISSN 0002-9904 Reprinted in Oeuvres Scientifiques/Collected Papers by André Weil ISBN:0-387-90330-5
Original source: https://en.wikipedia.org/wiki/Hasse–Davenport relation.
Read more |