p-adic gamma function
In mathematics, the p-adic gamma function Γp is a function of a p-adic variable analogous to the gamma function. It was first explicitly defined by (Morita 1975), though (Boyarsky 1980) pointed out that (Dwork 1964) implicitly used the same function. (Diamond 1977) defined a p-adic analog Gp of log Γ. (Overholtzer 1952) had previously given a definition of a different p-adic analogue of the gamma function, but his function does not have satisfactory properties and is not used much.
Definition
The p-adic gamma function is the unique continuous function of a p-adic integer x (with values in [math]\displaystyle{ \mathbb{Z}_p }[/math]) such that
- [math]\displaystyle{ \Gamma_p(x) = (-1)^x \prod_{0\lt i\lt x,\ p \,\nmid\, i} i }[/math]
for positive integers x, where the product is restricted to integers i not divisible by p. As the positive integers are dense with respect to the p-adic topology in [math]\displaystyle{ \mathbb{Z}_p }[/math], [math]\displaystyle{ \Gamma_p(x) }[/math] can be extended uniquely to the whole of [math]\displaystyle{ \mathbb{Z}_p }[/math]. Here [math]\displaystyle{ \mathbb{Z}_p }[/math] is the ring of p-adic integers. It follows from the definition that the values of [math]\displaystyle{ \Gamma_p(\mathbb{Z}) }[/math] are invertible in [math]\displaystyle{ \mathbb{Z}_p }[/math]; this is because these values are products of integers not divisible by p, and this property holds after the continuous extension to [math]\displaystyle{ \mathbb{Z}_p }[/math]. Thus [math]\displaystyle{ \Gamma_p:\mathbb{Z}_p\to\mathbb{Z}_p^\times }[/math]. Here [math]\displaystyle{ \mathbb{Z}_p^\times }[/math] is the set of invertible p-adic integers.
Basic properties of the p-adic gamma function
The classical gamma function satisfies the functional equation [math]\displaystyle{ \Gamma(x+1) = x\Gamma(x) }[/math] for any [math]\displaystyle{ x\in\mathbb{C}\setminus\mathbb{Z}_{\le0} }[/math]. This has an analogue with respect to the Morita gamma function:
- [math]\displaystyle{ \frac{\Gamma_p(x+1)}{\Gamma_p(x)}=\begin{cases} -x, & \mbox{if } x \in \mathbb{Z}_p^\times \\ -1, & \mbox{if } x\in p\mathbb{Z}_p. \end{cases} }[/math]
The Euler's reflection formula [math]\displaystyle{ \Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin{(\pi x)}} }[/math] has its following simple counterpart in the p-adic case:
- [math]\displaystyle{ \Gamma_p(x)\Gamma_p(1-x) = (-1)^{x_0}, }[/math]
where [math]\displaystyle{ x_0 }[/math] is the first digit in the p-adic expansion of x, unless [math]\displaystyle{ x \in p\mathbb{Z}_p }[/math], in which case [math]\displaystyle{ x_0 = p }[/math] rather than 0.
Special values
- [math]\displaystyle{ \Gamma_p(0)=1, }[/math]
- [math]\displaystyle{ \Gamma_p(1)=-1, }[/math]
- [math]\displaystyle{ \Gamma_p(2)=1, }[/math]
- [math]\displaystyle{ \Gamma_p(3)=-2, }[/math]
and, in general,
- [math]\displaystyle{ \Gamma_p(n+1)=\frac{(-1)^{n+1}n!}{[n/p]!p^{[n/p]}}\quad(n\ge2). }[/math]
At [math]\displaystyle{ x=\frac12 }[/math] the Morita gamma function is related to the Legendre symbol [math]\displaystyle{ \left(\frac{a}{p}\right) }[/math]:
- [math]\displaystyle{ \Gamma_p\left(\frac12\right)^2 = -\left(\frac{-1}{p}\right). }[/math]
It can also be seen, that [math]\displaystyle{ \Gamma_p(p^n)\equiv1\pmod{p^n}, }[/math] hence [math]\displaystyle{ \Gamma_p(p^n)\to1 }[/math] as [math]\displaystyle{ n\to\infty }[/math].[1]:369
Other interesting special values come from the Gross–Koblitz formula, which was first proved by cohomological tools, and later was proved using more elementary methods.[2] For example,
- [math]\displaystyle{ \Gamma_5\left(\frac14\right)^2=-2+\sqrt{-1}, }[/math]
- [math]\displaystyle{ \Gamma_7\left(\frac13\right)^3=\frac{1-3\sqrt{-3}}{2}, }[/math]
where [math]\displaystyle{ \sqrt{-1}\in\mathbb{Z}_5 }[/math] denotes the square root with first digit 3, and [math]\displaystyle{ \sqrt{-3}\in\mathbb{Z}_7 }[/math] denotes the square root with first digit 2. (Such specifications must always be done if we talk about roots.)
Another example is
- [math]\displaystyle{ \Gamma_3\left(\frac18\right)\Gamma_3\left(\frac38\right)=-(1+\sqrt{-2}), }[/math]
where [math]\displaystyle{ \sqrt{-2} }[/math] is the square root of [math]\displaystyle{ -2 }[/math] in [math]\displaystyle{ \mathbb{Q}_3 }[/math] congruent to 1 modulo 3.[3]
p-adic Raabe formula
The Raabe-formula for the classical Gamma function says that
- [math]\displaystyle{ \int_0^1\log\Gamma(x+t)dt=\frac12\log(2\pi)+x\log x-x. }[/math]
This has an analogue for the Iwasawa logarithm of the Morita gamma function:[4]
- [math]\displaystyle{ \int_{\mathbb{Z}_p}\log\Gamma_p(x+t)dt=(x-1)(\log\Gamma_p)'(x)-x+\left\lceil\frac{x}{p}\right\rceil\quad(x\in\mathbb{Z}_p). }[/math]
The ceiling function to be understood as the p-adic limit [math]\displaystyle{ \lim_{n\to\infty}\left\lceil\frac{x_n}{p}\right\rceil }[/math] such that [math]\displaystyle{ x_n\to x }[/math] through rational integers.
Mahler expansion
The Mahler expansion is similarly important for p-adic functions as the Taylor expansion in classical analysis. The Mahler expansion of the p-adic gamma function is the following:[1]:374
- [math]\displaystyle{ \Gamma_p(x+1)=\sum_{k=0}^\infty a_k\binom{x}{k}, }[/math]
where the sequence [math]\displaystyle{ a_k }[/math] is defined by the following identity:
- [math]\displaystyle{ \sum_{k=0}^\infty(-1)^{k+1}a_k\frac{x^k}{k!}=\frac{1-x^p}{1-x}\exp\left(x+\frac{x^p}{p}\right). }[/math]
See also
References
- Boyarsky, Maurizio (1980), "p-adic gamma functions and Dwork cohomology", Transactions of the American Mathematical Society 257 (2): 359–369, doi:10.2307/1998301, ISSN 0002-9947
- Diamond, Jack (1977), "The p-adic log gamma function and p-adic Euler constants", Transactions of the American Mathematical Society 233: 321–337, doi:10.2307/1997840, ISSN 0002-9947
- Diamond, Jack (1984), "p-adic gamma functions and their applications", in Chudnovsky, David V.; Chudnovsky, Gregory V.; Cohn, Henry et al., Number theory (New York, 1982), Lecture Notes in Math., 1052, Berlin, New York: Springer-Verlag, pp. 168–175, doi:10.1007/BFb0071542, ISBN 978-3-540-12909-7
- Dwork, Bernard (1964), "On the zeta function of a hypersurface. II", Annals of Mathematics, Second Series 80 (2): 227–299, doi:10.2307/1970392, ISSN 0003-486X
- Morita, Yasuo (1975), "A p-adic analogue of the Γ-function", Journal of the Faculty of Science. University of Tokyo. Section IA. Mathematics 22 (2): 255–266, ISSN 0040-8980
- Overholtzer, Gordon (1952), "Sum functions in elementary p-adic analysis", American Journal of Mathematics 74 (2): 332–346, doi:10.2307/2371998, ISSN 0002-9327
- ↑ 1.0 1.1 Robert, Alain M. (2000). A course in p-adic analysis. New York: Springer-Verlag.
- ↑ Robert, Alain M. (2001). "The Gross-Koblitz formula revisited". Rendiconti del Seminario Matematico della Università di Padova. The Mathematical Journal of the University of Padova 105: 157–170. doi:10.1016/j.jnt.2009.08.005. ISSN 0041-8994. http://www.numdam.org/item?id=RSMUP_2001__105__157_0.
- ↑ Cohen, H. (2007). Number Theory. 2. New York: Springer Science+Business Media. p. 406.
- ↑ Cohen, Henri; Eduardo, Friedman (2008). "Raabe's formula for p-adic gamma and zeta functions". Annales de l'Institut Fourier 88 (1): 363–376. doi:10.5802/aif.2353. http://www.numdam.org/item/AIF_2008__58_1_363_0/.
Original source: https://en.wikipedia.org/wiki/P-adic gamma function.
Read more |