Hypotrochoid
A hypotrochoid is a roulette traced by a point attached to a circle of radius r rolling around the inside of a fixed circle of radius R, where the point is a distance d from the center of the interior circle.
The parametric equations for a hypotrochoid are:[1]
- [math]\displaystyle{ x (\theta) = (R - r)\cos\theta + d\cos\left({R - r \over r}\theta\right) }[/math]
- [math]\displaystyle{ y (\theta) = (R - r)\sin\theta - d\sin\left({R - r \over r}\theta\right). }[/math]
Where [math]\displaystyle{ \theta }[/math] is the angle formed by the horizontal and the center of the rolling circle (these are not polar equations because [math]\displaystyle{ \theta }[/math] is not the polar angle). When measured in radian, [math]\displaystyle{ \theta }[/math] takes value from [math]\displaystyle{ 0 }[/math] to [math]\displaystyle{ 2 * \pi * \frac{LCM(r, R)}{r} }[/math]where LCM is least common multiple.
Special cases include the hypocycloid with d = r and the ellipse with R = 2r.[2] (see Tusi couple)
The classic Spirograph toy traces out hypotrochoid and epitrochoid curves.
See also
References
- ↑ J. Dennis Lawrence (1972). A ca of special plane curves. Dover Publications. pp. 165–168. ISBN 0-486-60288-5.
- ↑ Gray, Alfred (in en). Modern Differential Geometry of Curves and Surfaces with Mathematica (Second ed.). CRC Press. p. 906. ISBN 9780849371646. https://books.google.com/books?id=-LRumtTimYgC&pg=PA906.
External links
- Weisstein, Eric W.. "Hypotrochoid". http://mathworld.wolfram.com/Hypotrochoid.html.
- Flash Animation of Hypocycloid
- Hypotrochoid from Visual Dictionary of Special Plane Curves, Xah Lee
- Interactive hypotrochoide animation
- O'Connor, John J.; Robertson, Edmund F., "Hypotrochoid", MacTutor History of Mathematics archive, University of St Andrews, http://www-history.mcs.st-andrews.ac.uk/Curves/Hypotrochoid.html.
de:Zykloide#Epi- und Hypozykloide ja:トロコイド#内トロコイド