Company:Compact Disc Digital Audio

From HandWiki
(Redirected from IEC 60908)
Short description: Data format used for audio compact discs
Compact Disc Digital Audio
CDDAlogo.svg
Audio Compact Disc.png
Media typeOptical disc
Encoding2 channels of LPCM audio, each signed 16-bit values sampled at 44100 Hz
Capacityup to 74–80 minutes (up to 24 minutes for mini 8 cm CD)
Read mechanismSemiconductor laser (780 nm wavelength)
StandardIEC 60908
Developed bySony & Philips
UsageAudio storage
Extended toDVD-Audio
Released1982

Compact Disc Digital Audio (CDDA or CD-DA), also known as Digital Audio Compact Disc or simply as Audio CD, is the standard format for audio compact discs. The standard is defined in the Red Book, one of a series of Rainbow Books (named for their binding colors) that contain the technical specifications for all CD formats.

The first commercially available audio CD player, the Sony CDP-101, was released in October 1982 in Japan. The format gained worldwide acceptance in 1983–84, selling more than a million CD players in those two years, to play 22.5 million discs.[1]

Beginning in the 2000s, CDs were increasingly being replaced by other forms of digital storage and distribution, with the result that by 2010 the number of audio CDs being sold in the U.S. had dropped about 50% from their peak; however, they remained one of the primary distribution methods for the music industry.[2] In the 2010s, revenues from digital music services, such as iTunes, Spotify, and YouTube, matched those from physical format sales for the first time.[3] According to the RIAA's midyear report in 2020, phonograph record revenues surpassed those of CDs for the first time since the 1980s.[4][5]

History

The optophone, first presented in 1931, was an early device that used light for both recording and playback of sound signals on a transparent photograph.[6] More than thirty years later, American inventor James T. Russell has been credited with inventing the first system to record digital media on a photosensitive plate. Russell's patent application was filed in 1966, and he was granted a patent in 1970.[7] Following litigation, Sony and Philips licensed Russell's patents for recording in 1988.[8][9] It is debatable whether Russell's concepts, patents, and prototypes instigated and in some measure influenced the compact disc's design.[10]

The compact disc is an evolution of LaserDisc technology,[11] where a focused laser beam is used that enables the high information density required for high-quality digital audio signals. Unlike the prior art by Optophonie and James Russell, the information on the disc is read from a reflective layer using a laser as a light source through a protective substrate. Prototypes were developed by Philips and Sony independently in the late 1970s.[12] Although originally dismissed by Philips Research management as a trivial pursuit,[13] the CD became the primary focus for Philips as the LaserDisc format struggled.[14] In 1979, Sony and Philips set up a joint task force of engineers to design a new digital audio disc. After a year of experimentation and discussion, the Red Book CD-DA standard was published in 1980. After their commercial release in 1982, compact discs and their players were extremely popular. Despite costing up to $1,000, over 400,000 CD players were sold in the United States between 1983 and 1984.[15] By 1988, CD sales in the United States surpassed those of vinyl LPs, and by 1992 CD sales surpassed those of prerecorded music cassette tapes.[16][17] The success of the compact disc has been credited to the cooperation between Philips and Sony, which together agreed upon and developed compatible hardware. The unified design of the compact disc allowed consumers to purchase any disc or player from any company and allowed the CD to dominate the at-home music market unchallenged.[18]

Digital audio laser-disc prototypes

In 1974, Lou Ottens, director of the audio division of Philips, started a small group to develop an analog optical audio disc with a diameter of 20 cm (7.9 in) and a sound quality superior to that of the vinyl record.[19] However, due to the unsatisfactory performance of the analog format, two Philips research engineers recommended a digital format in March 1974. In 1977, Philips then established a laboratory with the mission of creating a digital audio disc. The diameter of Philips's prototype compact disc was set at 11.5 cm (4.5 in), the diagonal of an audio cassette.[11][20]

Heitaro Nakajima, who developed an early digital audio recorder within Japan's national public broadcasting organization, NHK, in 1970, became general manager of Sony's audio department in 1971. In 1973, his team developed a digital PCM adaptor that made audio recordings using a Betamax video recorder. After this, in 1974 the leap to storing digital audio on an optical disc was easily made.[21] Sony first publicly demonstrated an optical digital audio disc in September 1976. A year later, in September 1977, Sony showed the press a 30 cm (12 in) disc that could play an hour of digital audio (44,100 Hz sampling rate and 16-bit resolution) using modified frequency modulation encoding.[22] In September 1978, the company demonstrated an optical digital audio disc with a 150-minute playing time, 44,056 Hz sampling rate, 16-bit linear resolution, and cross-interleaved error correction code—specifications similar to those later settled upon for the standard compact disc format in 1980. Technical details of Sony's digital audio disc were presented during the 62nd AES Convention, held on 13–16 March 1979, in Brussels.[22] Sony's AES technical paper was published on 1 March 1979. A week later, on 8 March, Philips publicly demonstrated a prototype of an optical digital audio disc at a press conference called "Philips Introduce Compact Disc"[23] in Eindhoven, Netherlands.[24] Sony executive Norio Ohga, later CEO and chairman of Sony, and Heitaro Nakajima were convinced of the format's commercial potential and pushed further development despite widespread skepticism.[25]

Collaboration and standardization

Dutch inventor and Philips chief engineer Kees Schouhamer Immink was part of the team that produced the standard compact disc in 1980

In 1979, Sony and Philips set up a joint task force of engineers to design a new digital audio disc. Led by engineers Kees Schouhamer Immink and Toshitada Doi, the research pushed forward laser and optical disc technology.[23] After a year of experimentation and discussion, the task force produced the Red Book CD-DA standard. First published in 1980, the standard was formally adopted by the IEC as an international standard in 1987, with various amendments becoming part of the standard in 1996.[citation needed]

Philips coined the term compact disc in line with another audio product, the Compact Cassette,[20] and contributed the general manufacturing process, based on video LaserDisc technology. Philips also contributed eight-to-fourteen modulation (EFM), while Sony contributed the error-correction method, CIRC, which offers resilience to defects such as scratches and fingerprints.

The Compact Disc Story,[11] told by a former member of the task force, gives background information on the many technical decisions made, including the choice of the sampling frequency, playing time, and disc diameter. The task force consisted of around 6 persons,[13][26] though according to Philips, the compact disc was "invented collectively by a large group of people working as a team."[27]

Initial launch and adoption

Early milestones in the launch and adoption of the format included:

  • The first test pressing was of a recording of Richard Strauss's An Alpine Symphony, recorded December 1–3, 1980 and played by the Berlin Philharmonic and conducted by Herbert von Karajan, who had been enlisted as an ambassador for the format in 1979.[28]
  • The world presentation took place during the Salzburg Easter Festival on 15 April 1981, at a press conference of Akio Morita and Norio Ohga (Sony), Joop van Tilburg (Philips), and Richard Busch (PolyGram), in the presence of Karajan who praised the new format.[29]
  • The first public demonstration was on the BBC television programme Tomorrow's World in 1981, when the Bee Gees' album Living Eyes (1981) was played.[30]
  • The first commercial compact disc was produced on 17 August 1982, a 1979 recording of Chopin waltzes performed by Claudio Arrau.[31]
  • The first 50 titles were released in Japan on 1 October 1982,[32] the first of which was a re-release of the Billy Joel album 52nd Street.[33]
  • The first CD played on BBC Radio was in October 1982 on BBC Radio Scotland (Jimmy Mack programme, Followed by Ken Bruce and Eddie Mair all BBC Scotland), with the first CD played on UK independent radio station shortly after (Radio Forth, Jay Crawford Show). The CD was the Dire Straits album Love Over Gold.[34]
  • The Japanese launch was followed on 14 March 1983 by the introduction of CD players and discs to Europe[35] and North America where CBS Records released sixteen titles.[36]

The first artist to sell a million copies on CD was Dire Straits, with their 1985 album Brothers in Arms.[37] One of the first CD markets was devoted to reissuing popular music whose commercial potential was already proven. The first major artist to have their entire catalog converted to CD was David Bowie, whose first fourteen studio albums of (then) sixteen were made available by RCA Records in February 1985, along with four greatest hits albums; his fifteenth and sixteenth albums had already been issued on CD by EMI Records in 1983 and 1984, respectively.[38] On 26 February 1987, the first four UK albums by the Beatles were released in mono on compact disc.[39]

The growing acceptance of the CD in 1983 marks the beginning of the popular digital audio revolution.[40] It was enthusiastically received, especially in the early-adopting classical music and audiophile communities, and its handling quality received particular praise. As the price of players gradually came down, and with the introduction of the portable Discman, the CD began to gain popularity in the larger popular and rock music markets. With the rise in CD sales, pre-recorded cassette tape sales began to decline in the late 1980s; CD sales overtook cassette sales in the early 1990s.[citation needed][41] In 1988, 400 million CDs were manufactured by 50 pressing plants around the world.[42]

Further development

Sony Discman D-E307CK portable CD player with 1-bit DAC

Early CD players employed binary-weighted digital-to-analog converters (DAC), which contained individual electrical components for each bit of the DAC.[43] Even when using high-precision components, this approach was prone to decoding errors.[clarification needed][43] Another issue was jitter, a time-related defect. Confronted with the instability of DACs, manufacturers initially turned to increasing the number of bits in the DAC and using several DACs per audio channel, averaging their output.[43] This increased the cost of CD players but did not solve the core problem.

A breakthrough in the late 1980s culminated in development of the 1-bit DAC, which converts high-resolution low-frequency digital input signal into a lower-resolution high-frequency signal that is mapped to voltages and then smoothed with an analog filter. The temporary use of a lower-resolution signal simplified circuit design and improved efficiency, which is why it became dominant in CD players starting from the early 1990s. Philips used a variation of this technique called pulse-density modulation (PDM),[44] while Matsushita (now Panasonic) chose pulse-width modulation (PWM), advertising it as MASH, which is an acronym derived from their patented Multi-stAge noiSe-sHaping PWM topology.[43]

The CD was primarily planned as the successor to the vinyl record for playing music, rather than as a data storage medium. However, CDs have grown to encompass other applications. In 1983, following the CD's introduction, Immink and Joseph Braat presented the first experiments with erasable compact discs during the 73rd AES Convention.[45] In June 1985, the computer-readable CD-ROM (read-only memory) and, in 1990, recordable CD-R discs were introduced.[lower-alpha 1] Recordable CDs became an alternative to tape for recording and distributing music and could be duplicated without degradation in sound quality.

CD sales in the United States peaked by 2000.[46] By the early 2000s, the CD player had largely replaced the audio cassette player as standard equipment in new automobiles, with 2010 being the final model year for any car in the United States to have a factory-equipped cassette player.[47]

Other newer video formats such as DVD and Blu-ray use the same physical geometry as CD, and most DVD and Blu-ray players are backward compatible with audio CDs.

Decline

With the advent and popularity of Internet-based distribution of files in lossy-compressed audio formats such as MP3, sales of CDs began to decline in the 2000s. For example, between 2000 and 2008, despite overall growth in music sales and one anomalous year of increase, major-label CD sales declined overall by 20%.[48] In 2012, CDs and DVDs made up only 34% of music sales in the United States.[49] By 2015, only 24% of music in the United States was purchased on physical media, two thirds of this consisting of CDs;[50] however, in the same year in Japan, over 80% of music was bought on CDs and other physical formats.[51] In 2018, U.S. CD sales were 52 million units—less than 6% of the peak sales volume in 2000.[46] In the UK, 32 million units were sold, almost 100 million fewer than in 2008.[52]

During the 2010s, the increasing popularity of solid-state media and music streaming services caused automakers to remove automotive CD players in favor of minijack auxiliary inputs, wired connections to USB devices and wireless Bluetooth connections.[53] Automakers viewed CD players as using up valuable space and taking up weight which could be reallocated to more popular features, like large touchscreens.[54] By 2021, only Lexus and General Motors were still including CD players as standard equipment with certain vehicles.[54]

Despite rapidly declining sales year-over-year, the pervasiveness of the technology lingered for a time, with companies placing CDs in pharmacies, supermarkets, and filling station convenience stores to target buyers less likely to be able to use Internet-based distribution.[14] In 2018, Best Buy announced plans to decrease their focus on CD sales, however, while continuing to sell records, sales of which are growing during the vinyl revival.[55][56][57] CDs continued to be strong in some markets such as Japan where 132 million units were produced in 2019.[58]

The decline in CD sales has slowed in recent years; in 2021, CD sales increased in the US for the first time since 2004,[59] with Axios citing its rise to "young people who are finding they like hard copies of music in the digital age".[60] It came at the same time as both vinyl and cassette reached sales levels not seen in 30 years.[61]

Awards and accolades

Sony and Philips received praise for the development of the compact disc from professional organizations. These awards include

  • Technical Grammy Award for Sony and Philips, 1998.[62]
  • IEEE Milestone award, 2009, for Philips only with the citation: "On 8 March 1979, N.V. Philips' Gloeilampenfabrieken demonstrated for the international press a Compact Disc Audio Player. The demonstration showed that it is possible by using digital optical recording and playback to reproduce audio signals with superb stereo quality. This research at Philips established the technical standard for digital optical recording systems."[63]

Standard

The Red Book specifies the physical parameters and properties of the CD, the optical parameters, deviations and error rate, modulation system (eight-to-fourteen modulation, EFM) and error correction facility (cross-interleaved Reed–Solomon coding, CIRC), and the eight subcode channels. These parameters are common to all compact discs and used by all logical formats: audio CD, CD-ROM, etc. The standard also specifies the form of digital audio encoding (2-channel signed 16-bit LPCM sampled at 44,100 Hz).

The first edition of the Red Book was released in 1980 by Philips and Sony;[64][65] it was adopted by the Digital Audio Disc Committee and ratified by the International Electrotechnical Commission (IEC) Technical Committee 100 as an international standard in 1987 with the reference IEC 60908.[66] The second edition of IEC 60908 was published in 1999[67] and it replaces the first edition, amendment 1 (1992) and the corrigendum to amendment 1. The IEC 60908 however does not contain all the information for extensions that is available in the Red Book, such as the details for CD-Text, CD+G and CD+EG.[68][69]

The standard is not freely available and must be licensed. It is available from Philips and the IEC. (As of 2013), Philips outsources licensing of the standard to Adminius[citation needed], which charges US$100 for the Red Book, plus US$50 each for the Subcode Channels R-W and CD Text Mode annexes.[70]

Audio format

The audio contained in a CD-DA consists of two-channel signed 16-bit LPCM sampled at 44,100 Hz and written as a little-endian interleaved stream with left channel coming first.

The sampling rate is adapted from that attained when recording digital audio on videotape with a PCM adaptor, an earlier way of storing digital audio.[71] An audio CD can represent frequencies up to 22.05 kHz, the Nyquist frequency of the 44.1 kHz sample rate.[72]

There was a long debate over the use of 16-bit (Sony) or 14-bit (Philips) quantization, and 44,056 or 44,100 samples/s (Sony) or approximately 44,000 samples/s (Philips). When the Sony/Philips task force designed the Compact Disc, Philips had already developed a 14-bit D/A converter (DAC), but Sony insisted on 16-bit. In the end Sony won, so 16 bits and 44.1 kilosamples per second prevailed. Philips found a way to produce 16-bit quality using its 14-bit DAC by using four times oversampling.[11]

Some CDs are mastered with pre-emphasis, an artificial boost of high audio frequencies. The pre-emphasis improves the apparent signal-to-noise ratio by making better use of the channel's dynamic range. On playback, the player applies a de-emphasis filter to restore the frequency response curve to an overall flat one. Pre-emphasis time constants are 50µs and 15µs (9.49 dB boost at 20 kHz), and a binary flag in the disc subcode instructs the player to apply de-emphasis filtering if appropriate. Playback of such discs in a computer or ripping to WAV files typically does not take into account the pre-emphasis, so such files play back with a distorted frequency response.[citation needed] FFmpeg has a filter to remove (or apply) the pre-emphasis in order to create standard WAV files, or to create CDs with pre-emphasis.[73]

Four-channel, or quadraphonic, supported was originally intended to be included in CD-DA.[74] The Red Book specification briefly mentioned a four-channel mode in its June 1980,[75] September 1983,[76] and November 1991[77] editions. On the first page, it lays out the "Main parameters" of the CD system, including: "Number of channels: 2 and/or 4 simultaneously[*] sampled." The footnote says, "In the case of more than two channels the encoder and decoder diagrams have to be adapted."

In reality, however, the underspecified "four-channel" mode was dropped from the CD standard when it was adopted by the International Electrotechnical Commission and became IEC 908:1987,[78] and later IEC 60908:1999.[79] Since the behavior of the "four-channel" or "Broadcasting use" bit was never specified by either CD standard, no mass-marketed discs have attempted to use the Red Book's four-channel mode, and no players have purported to implement it.

Storage capacity and playing time

The creators of the CD originally aimed at a playing time of 60 minutes with a disc diameter of 100 mm (Sony) or 115 mm (Philips).[13] Sony vice-president Norio Ohga suggested extending the capacity to 74 minutes to accommodate the recording of Wilhelm Furtwängler conducting Ludwig van Beethoven's Ninth Symphony at the 1951 Bayreuth Festival.[80][81] The additional 14-minute playing time subsequently required changing to a 120 mm disc. Kees Schouhamer Immink, Philips' chief engineer, however, denies this, claiming that the increase was motivated by technical considerations, and that even after the increase in size, the Furtwängler recording would not have fit onto one of the earliest CDs.[11][13]

According to a Sunday Tribune interview,[82] the story is slightly more involved. In 1979, Philips owned PolyGram, one of the world's largest distributors of music. PolyGram had set up a large experimental CD plant in Hannover, Germany, which could produce huge numbers of CDs having a diameter of 115 mm. Sony did not yet have such a facility. If Sony had agreed on the 115-mm disc, Philips would have had a significant competitive edge in the market. The long playing time of Beethoven's Ninth Symphony imposed by Ohga was used to push Philips to accept 120 mm, so that Philips' PolyGram lost its edge on disc fabrication.[82]

The 74-minute playing time of a CD, which is longer than the 22 minutes per side[83][84] typical of long-playing (LP) vinyl albums, was often used to the CD's advantage during the early years when CDs and LPs vied for commercial sales. CDs would often be released with one or more bonus tracks, enticing consumers to buy the CD for the extra material. However, attempts to combine double LPs onto one CD occasionally resulted in the opposite situation in which the CD would instead offer less audio than the LP. One such example was with DJ Jazzy Jeff & The Fresh Prince's double-album He's the DJ, I'm the Rapper, in which initial CD releases of the album had multiple tracks edited down for length to fit on a single disc; recent CD reissues package the album across two discs as a result. The emergence of 80-minute CDs allowed for some double albums that were previously edited for length or packaged as double-CDs to be re-released on a single disc, such as 1999 by Prince in the case of the former and Tommy by the Who in the case of the latter.

Playing times beyond 74 minutes are achieved by decreasing track pitch (the distance separating the track as it spirals the disc). However, most players can still accommodate the more closely spaced data if it is still within Red Book tolerances.[85] Current manufacturing processes allow an audio CD to contain up to 82 minutes (variable from one replication plant to another) without requiring the content creator to sign a waiver releasing the plant owner from responsibility if the CD produced is marginally or entirely unreadable by some playback equipment. In current practice, maximum CD playing time has crept higher by reducing minimum engineering tolerances.

Progression in the maximum duration of released audio CDs
Title Artist Label Released Time
Mission of Burma (compilation) Mission of Burma Rykodisc 1988 80:08[86]
Myこれ!クション 内海和子 ベスト (My Kore! Kushon Kazuko Utsumi Best)

(compilation)

内海和子 (Kazuko Utsumi) Pony Canyon – PCCA-01870 2003 80:12[87]
Late Romantic Masterworks Andrew Fletcher Mirabilis Records 1990 80:51[88]
JS Bach, Das Orgelbüchlein Richard Marlow Mirabilis Records 1990 82:04[88]
Bruckner's Fifth (live) Munich Philharmonic cond. Christian Thielemann Deutsche Grammophon/Universal Classics 477 5377 2004 82:34[89]
Sergey Tanyiev works for piano and ensemble Vadim Repin, Ilya Gringolts, Nobuko Imai, Lynn Harrell, and Mikhail Pletnev Deutsche Grammophon/Universal Classics 477 5419 2005 82:34[90]
Chopin & Schumann Etudes Valentina Lisitsa Decca/Universal Classics 478 7697 2014 85:16[91]
So80s Presents Alphaville Alphaville (curated by Blank & Jones) Soulfood 2014 85:10 and 85:57[92]
Mozart Violin Concertos (Mozart 225 Boxed Set, CD75) Various Artists Deutsche Grammophon/Universal Classics 478 9864 2016 86:30[93]
Bäst of Die Ärzte Hot Action/Universal 930 003 2006 88:41 on disc 1, 89:07 on disc 2[94]

Technical specifications

Data encoding

Each audio sample is a signed 16-bit two's complement integer, with sample values ranging from −32768 to +32767. The source audio data is divided into frames, containing twelve samples each (six left and six right samples, alternating), for a total of 192 bits (24 bytes) of audio data per frame.

This stream of audio frames, as a whole, is then subjected to CIRC encoding, which segments and rearranges the data and expands it with error correction codes in a way that allows occasional read errors to be detected and corrected. CIRC encoding interleaves the audio frames throughout the disc over several consecutive frames so that the information will be more resistant to burst errors. Therefore, a physical frame on the disc will actually contain information from multiple logical audio frames. This process adds 64 bits of error correction data to each frame. After this, 8 bits of subcode or subchannel data are added to each of these encoded frames, which is used for control and addressing when playing the CD.

CIRC encoding plus the subcode byte generate 33-bytes long frames, called "channel-data" frames. These frames are then modulated through eight-to-fourteen modulation (EFM), where each 8-bit word is replaced with a corresponding 14-bit word designed to reduce the number of transitions between 0 and 1. This reduces the density of physical pits on the disc and provides an additional degree of error tolerance. Three "merging" bits are added before each 14-bit word for disambiguation and synchronization. In total there are 33 × (14 + 3) = 561 bits. A 27-bit word (a 24-bit pattern plus 3 merging bits) is added to the beginning of each frame to assist with synchronization, so the reading device can locate frames easily. With this, a frame ends up containing 588 bits of "channel data" (which are decoded to only 192 bits of music).

The frames of channel data are finally written to disc physically in the form of pits and lands, with each pit or land representing a series of zeroes, and with the transition points—the edge of each pit—representing a 1. A Red Book-compatible CD-R has pit-and-land-shaped spots on a layer of organic dye instead of actual pits and lands; a laser creates the spots by altering the reflective properties of the dye.

Due to the weaker error correction sector structure used on audio CDs and video CDs (Mode 2 Form 2) than on data discs (Mode 1 or Mode 2 Form 1), C2 errors are not correctable and signify data loss.[95][96] Even with uncorrectable errors, a compact disc player interpolates the data loss with the aim of making the damage unhearable.[97]

Data structure

Some of the visible features of an audio CD, including the lead-in, program area, and lead-out. A microscopic spiral of digital information begins near the disc's center and progresses toward the edge.

The audio data stream in an audio CD is continuous, but has three parts. The main portion, which is further divided into playable audio tracks, is the program area. This section is preceded by a lead-in track and followed by a lead-out track. The lead-in and lead-out tracks encode only silent audio, but all three sections contain subcode data streams.

The lead-in's subcode contains repeated copies of the disc's Table of Contents (TOC), which provides an index of the start positions of the tracks in the program area and lead-out. The track positions are referenced by absolute timecode, relative to the start of the program area, in MSF format: minutes, seconds, and fractional seconds called frames. Each timecode frame is one seventy-fifth of a second, and corresponds to a block of 98 channel-data frames—ultimately, a block of 588 pairs of left and right audio samples. Timecode contained in the subchannel data allows the reading device to locate the region of the disc that corresponds to the timecode in the TOC. The TOC on discs is analogous to the partition table on hard drives. Nonstandard or corrupted TOC records are abused as a form of CD/DVD copy protection, in e.g. the key2Audio scheme.

Tracks

The largest entity on a CD is called a track. A CD can contain up to 99 tracks (including a data track for mixed mode discs). Each track can in turn have up to 100 indexes, though players which still support this feature have become rarer over time. The vast majority of songs are recorded under index 1, with the pregap being index 0. Sometimes hidden tracks are placed at the end of the last track of the disc, often using index 2 or 3, or using the pregap as index 0 (this latter usage will result in the track playing as the time counter counts down to time 0:00 at the start of the track, index 1.) This is also the case with some discs offering "101 sound effects", with 100 and 101 being indexed as two and three on track 99. The index, if used, is occasionally put on the track listing as a decimal part of the track number, such as 99.2 or 99.3. (Information Society's Hack was one of very few CD releases to do this, following a release with an equally obscure CD+G feature.) The track and index structure of the CD were carried forward to the DVD format as title and chapter, respectively.

Tracks, in turn, are divided into timecode frames (or sectors), which are further subdivided into channel-data frames.

Frames and timecode frames

The smallest entity in a CD is a channel-data frame, which consists of 33 bytes and contains six complete 16-bit stereo samples: 24 bytes for the audio (two bytes × two channels × six samples = 24 bytes), eight CIRC error-correction bytes, and one subcode byte. As described in the "Data encoding" section, after the EFM modulation the number of bits in a frame totals 588.

On a Red Book audio CD, data is addressed using the MSF scheme, with timecodes expressed in minutes, seconds and another type of frames (mm:ss:ff), where one frame corresponds to 1/75 of a second of audio: 588 pairs of left and right samples. This timecode frame is distinct from the 33-byte channel-data frame described above, and is used for time display and positioning the reading laser. When editing and extracting CD audio, this timecode frame is the smallest addressable time interval for an audio CD; thus, track boundaries only occur on these frame boundaries. Each of these structures contains 98 channel-data frames, totaling 98 × 24 = 2,352 bytes of music. The CD is played at a speed of 75 frames (or sectors) per second, thus 44,100 samples or 176,400 bytes per second.

In the 1990s, CD-ROM and related Digital Audio Extraction (DAE) technology introduced the term sector to refer to each timecode frame, with each sector being identified by a sequential integer number starting at zero, and with tracks aligned on sector boundaries. An audio CD sector corresponds to 2,352 bytes of decoded data. The Red Book does not refer to sectors, nor does it distinguish the corresponding sections of the disc's data stream except as "frames" in the MSF addressing scheme.

The following table shows the relation between tracks, timecode frames (sectors) and channel-data frames:

Track level Track N
Timecode frame and sector level Timecode frame and sector 1 (2,352 B of data) Timecode frame and sector 2 (2,352 B of data) ...
Channel-data frame level Channel-data frame 1 (24 B of data) ... Channel-data frame 98 (24 B of data) ... ...

Bit rate

The audio bit rate for a Red Book audio CD is 1,411,200 bits per second (1,411 kbit/s) or 176,400 bytes per second; 2 channels × 44,100 samples per second per channel × 16 bits per sample. Audio data coming in from a CD is contained in sectors, each sector being 2,352 bytes, and with 75 sectors containing 1 second of audio. For comparison, the bit rate of a "1×" CD-ROM is defined as 2,048 bytes per sector × 75 sectors per second = 153,600 bytes per second. The remaining 304 bytes in a sector are used for additional data error correction.

Data access from computers

Unlike on a DVD or CD-ROM, there are no "files" on a Red Book audio CD; there is only one continuous stream of LPCM audio data, and a parallel, smaller set of 8 subcode data streams. Computer operating systems, however, may provide access to an audio CD as if it contains files. For example, Windows represents the CD's Table of Contents as a set of Compact Disc Audio track (CDA) files, each file containing indexing information, not audio data. By contrast however, Finder on macOS presents the CD's content as an actual set of files, with the AIFF-extension, which can be copied directly, randomly and individually by track as if it were actual files. In reality, macOS performs its own as-needed-rips in the background completely transparent to the user. The copied tracks are fully playable and editable on the user's computer.

In a process called ripping, digital audio extraction software can be used to read CD-DA audio data and store it in files. Common audio file formats for this purpose include WAV and AIFF, which simply preface the LPCM data with a short header; FLAC, ALAC, and Windows Media Audio Lossless, which compress the LPCM data in ways that conserve space yet allow it to be restored without any changes; and various lossy, perceptual coding formats like MP3, AAC, and Opus, which modify and compress the audio data in ways that irreversibly change the audio, but that exploit features of human hearing to make the changes difficult to discern.

Format variations

Recording publishers have created CDs that violate the Red Book standard. Some do so for the purpose of copy prevention, using systems like Copy Control. Some do so for extra features such as DualDisc, which includes both a CD layer and a DVD layer whereby the CD layer is much thinner, 0.9 mm, than required by the Red Book, which stipulates a nominal 1.2 mm, but at least 1.1 mm. Philips and many other companies have stated that including the Compact Disc Digital Audio logo on such non-conforming discs may constitute trademark infringement.

Super Audio CD was a standard published in 1999 that aimed to provide better audio quality than CDs. DVD-Audio emerged at around the same time.[98] Both formats were designed to feature audio of higher fidelity by using a higher sampling rate and DVD media. Neither format was widely accepted.

Copyright issues

There have been moves by the recording industry to make audio CDs (Compact Disc Digital Audio) unplayable on computer CD-ROM drives, to prevent the copying of music. This is done by intentionally introducing errors onto the disc that the embedded circuits on most stand-alone audio players can automatically compensate for, but which may confuse CD-ROM drives. Consumer rights advocates as of October 2001 pushed to require warning labels on compact discs that do not conform to the official Compact Disc Digital Audio standard (often called the Red Book) to inform consumers which discs do not permit full fair use of their content.

In 2005, Sony BMG Music Entertainment was criticized when a copy protection mechanism known as Extended Copy Protection (XCP) used on some of their audio CDs automatically and surreptitiously installed copy-prevention software on computers (see Sony BMG copy protection rootkit scandal). Such discs are not legally allowed to be called CDs or Compact Discs because they break the Red Book standard governing CDs, and Amazon.com for example describes them as "copy protected discs" rather than "compact discs" or "CDs".

See also

Notes

  1. The world's first CD-R was made by the Japanese firm Taiyo Yuden Co., Ltd. in 1988 as part of the joint Philips-Sony development effort.

References

  1. Pohlmann, Ken C. (2000). Principles of Digital Audio. McGraw-Hill. p. 244. ISBN 978-0-07-134819-5. 
  2. Plambeck, Joseph (30 May 2010). "As CD Sales Wane, Music Retailers Diversify". The New York Times. https://www.nytimes.com/2010/05/31/business/media/31bestbuy.html. 
  3. "IFPI publishes Digital Music Report 2015". 14 April 2015. http://www.ifpi.org/news/Global-digital-music-revenues-match-physical-format-sales-for-first-time. 
  4. "Vinyl Outsells CDs For the First Time in Decades". 10 September 2020. https://pitchfork.com/news/vinyl-outsells-cds-for-the-first-time-in-decades/amp/. 
  5. "Mid-Year 2020 RIAA Revenue Statistics". https://www.riaa.com/wp-content/uploads/2020/09/Mid-Year-2020-RIAA-Revenue-Statistics.pdf. 
  6. "Das Photo als Schalplatte" (in de). https://www.radiomuseum.org/forumdata/users/5100/Funkschau_4Jg_0131_1v1_v20.pdf. 
  7. "Analog to digital to optical photographic recording and playback system" US patent 3,501,586, published 1970-03-17
  8. "Inventor and physicist James Russell '53 will receive Vollum Award at Reed's convocation" (Press release). Reed College public affairs office. 2000. Archived from the original on 9 October 2013. Retrieved 24 July 2014.
  9. "Inventor of the Week – James T. Russell – The Compact Disc". MIT. December 1999. http://web.mit.edu/invent/iow/russell.html. 
  10. Brier Dudley (29 November 2004). "Scientist's invention was let go for a song". The Seattle Times. http://seattletimes.com/html/businesstechnology/2002103322_cdman29.html. 
  11. 11.0 11.1 11.2 11.3 11.4 K. Schouhamer Immink (1998). "The Compact Disc Story". Journal of the Audio Engineering Society 46 (5): 458–460. https://www.aes.org/e-lib/browse.cfm?elib=12144. Retrieved 6 February 2018. 
  12. "The History of the CD". Philips Research. https://www.philips.com/a-w/research/technologies/cd/beginning.html. [yes|permanent dead link|dead link}}]
  13. 13.0 13.1 13.2 13.3 K. Schouhamer Immink (2007). "Shannon, Beethoven, and the Compact Disc". IEEE Information Theory Society Newsletter 57: 42–46. https://www.researchgate.net/publication/322951358. Retrieved 6 February 2018. 
  14. 14.0 14.1 Straw, Will (2009). "The Music CD and Its Ends". Design and Culture 1 (1): 79–91. doi:10.2752/175470709787375751. 
  15. Rasen, Edward (May 1985). "Compact Discs: Sound of the Future". Spin. http://www.spin.com/1985/05/compact-discs-sound-of-the-future/. 
  16. Billboard (March 1992). "CD Unit Sales Pass Cassettes, Majors Say". Billboard. 
  17. Kozinn, Allan (December 1988). "Have Compact Disks Become Too Much of a Good Thing?". The New York Times. 
  18. Introducing the amazing Compact Disc (1982). Australian Broadcasting Corporation. 10 June 2015. Archived from the original on 23 November 2015. Retrieved 9 January 2016 – via YouTube.
  19. Kornelis, Chris (27 January 2015). "Why CDs may actually sound better than vinyl"]. http://www.laweekly.com/music/why-cds-may-actually-sound-better-than-vinyl-5352162. 
  20. 20.0 20.1 Peek, Hans B. (January 2010). "The Emergence of the Compact Disc". IEEE Communications Magazine 48 (1): 10–17. doi:10.1109/MCOM.2010.5394021. ISSN 0163-6804. 
  21. McClure, Steve (8 January 2000). "Heitaro Nakajima". Billboard: 68. https://books.google.com/books?id=kw0EAAAAMBAJ&pg=PA68. Retrieved 4 November 2014. 
  22. 22.0 22.1 A Long Play Digital Audio Disc System. March 1979. http://www.aes.org/e-lib/browse.cfm?elib=2912. Retrieved 14 February 2009. 
  23. 23.0 23.1 "How the CD Was Developed". BBC News. 17 August 2007. http://news.bbc.co.uk/2/hi/technology/6950933.stm. 
  24. "Philips Compact Disc". Philips. http://www.philipsmuseumeindhoven.nl/phe/products/e_cd.htm. 
  25. "Sony chairman credited with developing CDs dies", Fox News, 24 April 2011, http://www.foxnews.com/world/2011/04/24/sony-chairman-credited-developing-cds-dies/, retrieved 14 October 2012 
  26. Knopper, Steve (7 January 2009). Appetite for Self-Destruction: The Rise and Fall of the Record Industry in the Digital Age. Free Press. 
  27. "The Inventor of the CD". Philips Research. http://www.research.philips.com/newscenter/dossier/optrec/beethoven.html. 
  28. Kelly, Heather (29 September 2012). "Rock on! The compact disc turns 30". CNN. http://www.cnn.com/2012/09/28/tech/innovation/compact-disc-turns-30. "The first test CD was Richard Strauss's Eine Alpensinfonie, and the first CD actually pressed at a factory was ABBA's The Visitors, but that disc wasn't released commercially until later." 
  29. "Weltpräsentation des "Compact Disc Digital Audio System" (Audio-CD)" (in de). Salzburg: Archiv der Erzdiözese Salzburg. http://salzburg-geschichte-kultur.at/weltpraesentation-des-compact-disc-digital-audio-system-audio-cd/. 
  30. Bilyeu, Melinda; Hector Cook; Andrew Môn Hughes (2004). The Bee Gees:tales of the brothers Gibb. Omnibus Press. p. 519. ISBN 978-1-84449-057-8. 
  31. 1985 News Story on Debut of the Compact Disc (CD). acmestreamingDOTcom. 20 July 2010. Retrieved 25 June 2022 – via YouTube.
  32. "Sony History: A Great Invention 100 Years On". Sony. http://www.sony.net/Fun/SH/1-20/h5.html. 
  33. Giles, Jeff (1 October 2012). "How Billy Joel's '52nd Street' Became the First Compact Disc released". Ultimate Classic Rock. Townsquare Media, LLC. http://ultimateclassicrock.com/the-first-compact-disc-released/. 
  34. "Home page – HiFi Corner". https://www.hificorner.co.uk/. 
  35. "Philips celebrates 25th anniversary of the Compact Disc", Philips Media Release, 16 August 2007. Retrieved 6 October 2013.
  36. Kaptainis, Arthur (5 March 1983). "Sampling the latest sound: should last a lifetime". The Globe and Mail (Toronto): p. E11. 
  37. Maxim, 2004
  38. The New Schwann Record & Tape Guide Volume 37 No. 2 February 1985
  39. JON PARELES (25 February 1987). "NOW ON CD'S, FIRST 4 BEATLES ALBUMS". The New York Times. https://www.nytimes.com/1987/02/25/arts/now-on-cd-s-first-4-beatles-albums.html. 
  40. Canale, Larry (1986). Digital Audio's Guide to Compact Discs. Bantam Books. p. 4. ISBN 978-0-553-34356-4. 
  41. Harlow, Oliva. "When Did the CD Replace the Cassette Tape?". https://southtree.com/blogs/artifact/when-did-the-cd-replace-the-cassette-tape. 
  42. MAC Audio News. No. 178, November 1989. pp 19–21 Glenn Baddeley. November 1989 News Update. Melbourne Audio Club Inc.
  43. 43.0 43.1 43.2 43.3 van Willenswaard, Peter (1 May 1989). "PDM, PWM, Delta-Sigma, 1-Bit DACs". https://www.stereophile.com/content/pdm-pwm-delta-sigma-1-bit-dacs. 
  44. Atkinson, John (1989). "PDM, PWM, Delta-Sigma, 1-Bit DACs by John Atkinson". https://www.stereophile.com/content/pdm-pwm-delta-sigma-1-bit-dacs-john-atkinson. 
  45. K. Schouhamer Immink and J. Braat (1984). "Experiments Toward an Erasable Compact Disc". J. Audio Eng. Soc. 32: 531–538. https://www.researchgate.net/publication/237764745. Retrieved 2 February 2018. 
  46. 46.0 46.1 Richter, Felix. "The Rise and Fall of the Compact Disc". https://www.statista.com/chart/12950/cd-sales-in-the-us/. 
  47. Williams, Stephen (4 February 2011). "For Car Cassette Decks, Play Time Is Over". New York Times. https://www.nytimes.com/2011/02/06/automobiles/06AUDIO.html. 
  48. Smith, Ethan (2 January 2009). "Music Sales Decline for Seventh Time in Eight Years: Digital Downloads Can't Offset 20% Plunge in CD Sales". Wall Street Journal. https://www.wsj.com/articles/SB123075988836646491?mod=rss_whats_news_technology&mg=com-wsj. 
  49. "Buying CDs continues to be a tradition in Japan – Tokyo Times". 23 August 2013. http://www.tokyotimes.com/buying-cds-continues-to-be-a-tradition-in-japan/. 
  50. Friedlander, Joshua P. (2015). "News and Notes on 2015 Mid-Year RIAA Shipment and Revenue Statistics". Recording Industry Association of America. http://riaa.com/media/238E8AC7-3810-A95C-44DC-B6DEB46A3C6E.pdf. 
  51. Sisaro, Ben. New York Times 11 June 2015: Sisario, Ben (11 June 2015). "Music Streaming Service Aims at Japan, Where CD Is Still King". The New York Times. https://www.nytimes.com/2015/06/12/business/media/line-music-a-new-streaming-service-aims-at-japanese-market.html?_r=0. 
  52. "Is this the end of owning music?", BBC News, 3 January 2019, https://www.bbc.com/news/entertainment-arts-46735093, retrieved 3 March 2021 
  53. Biersdorfer, J.D. (March 17, 2017). "Hand Me the AUX Cord". The New York Times. https://www.nytimes.com/2017/03/17/technology/personaltech/hand-me-the-aux-cord.html. 
  54. 54.0 54.1 Ramey, Jay (February 9, 2021). "Do You Want a CD Player in a New Car?". Autoweek. https://www.autoweek.com/car-life/classic-cars/a35459280/do-you-want-a-cd-player-in-a-new-car/. 
  55. Ong, Thuy (6 February 2018). "Best Buy will stop selling CDs as digital music revenue continues to grow". https://www.theverge.com/2018/2/6/16973538/bestbuy-target-cd-sales-vinyl-cassette. 
  56. Owsinski, Bobby (7 July 2018). "Best Buy, Winding Down CD Sales, Pounds Another Nail Into The Format's Coffin". Forbes. https://www.forbes.com/sites/bobbyowsinski/2018/07/07/best-buy-cd-sales/amp/. 
  57. Chris Morris (2 July 2018). "End of a Era: Best Buy Significantly Cuts Back on CDs". Fortune. http://fortune.com/2018/07/02/best-buy-ends-cd-sales/. 
  58. "Physical Formats Still Dominate Japanese Music Market". 24 June 2020. https://www.nippon.com/en/japan-data/h00740/. 
  59. "Let's Get Physical! Vinyl Sales up >51%, CD Sales up for First Time in 17-yrs". 26 January 2022. https://www.strata-gee.com/lets-get-physical-vinyl-sales-up-51-cd-sales-up-for-first-time-in-17-yrs/. 
  60. Kariuki, Patrick (18 March 2022). "CD Sales Are Rising Again, but Why?". https://www.makeuseof.com/cd-sales-are-rising-again-but-why/. 
  61. "Vinyl and cassette UK sales continue to surge to 30 year high". https://www.officialcharts.com/chart-news/vinyl-and-cassette-uk-sales-continue-to-surge-to-30-year-high-as-cd-sales-decline-slows__34839/. 
  62. "Technical Grammy Award". http://www.grammy.org/recording-academy/producers-and-engineers/awards. 
  63. "IEEE CD Milestone". IEEE Global History Network. http://www.ieeeghn.org/wiki/index.php/Milestones:Compact_Disc_Audio_Player,_1979. 
  64. "How the CD was developed". BBC News. 17 August 2007. http://news.bbc.co.uk/2/hi/technology/6950933.stm. 
  65. "Philips Compact Disc". Philips Historical Products. http://www.philips-historische-producten.nl/cd-uk.html. 
  66. "IEC 60908:1987 Compact disc digital audio system". https://webstore.iec.ch/publication/18347. 
  67. "IEC 60908:1999 Audio recording – Compact disc digital audio system". https://webstore.iec.ch/preview/info_iec60908%7Bed2.0%7Db.pdf. 
  68. "CD Logos". 4 February 2013. https://www.edocpublish.com/resources-2/specifications/cd-logos/. 
  69. "Specs for Freeware Developers". http://www.ccs.neu.edu/home/bchafy/cdb/info/info.html. 
  70. "CD Products". https://www.lscdweb.com/ordering/cd_products.html. 
  71. stason.org, Stas Bekman: stas (at). "2-35 Why 44.1KHz? Why not 48KHz?"]. https://stason.org/TULARC/pc/cd-recordable/2-35-Why-44-1KHz-Why-not-48KHz.html. 
  72. John W. Leis (2011). Digital Signal Processing Using MATLAB for Students and Researchers. John Wiley & Sons. p. 82. ISBN 978-1-118-03380-7. https://books.google.com/books?id=Qtd-e1NtZVkC&pg=PA82. Retrieved 14 September 2022. "The Nyquist rate is twice the bandwidth of the signal ... The Nyquist frequency or folding frequency is half the sampling rate and corresponds to the highest frequency which a sampled data system can reproduce without error." 
  73. "FFmpeg Filters Documentation". FFmpeg project. https://ffmpeg.org/ffmpeg-filters.html#aemphasis. 
  74. Baert, Luc; Theunissen, Luc; Vergult, Guido (2013-10-22). Digital Audio and Compact Disc Technology. Newnes. ISBN 978-1-4831-4039-1. https://books.google.com/books?id=jqwgBQAAQBAJ&q=Four-channel+Compact+Disc+Digital+Audio&pg=PA108. Retrieved 27 August 2023. 
  75. "Red Book" Audio CD specification, June 1980, Sony/Philips
  76. "Red Book" Audio CD specification, September 1983, Sony/Philips
  77. "Red Book" Audio CD specification, November 1991, Sony/Philips
  78. IEC 60908:1987 Compact disc digital audio system, https://webstore.iec.ch/publication/18347, retrieved 6 May 2015 
  79. IEC 60908:1999 Audio recording – Compact disc digital audio system, https://webstore.iec.ch/preview/info_iec60908%7Bed2.0%7Db.pdf, retrieved 6 May 2015 
  80. Philips. "Beethoven's Ninth Symphony of Greater Importance than Technology". http://www.marantzphilips.nl/The_cd_laser/. 
  81. AES. "AES Oral History Project: Kees A.Schouhamer Immink". http://www.aes.org/historical/store/oralhistory/?code=OHP-016-DVD. 
  82. 82.0 82.1 Cassidy, Fergus (23 October 2005). "Great Lengths" (reprint). Sunday Tribune. http://www.ferguscassidy.ie/ethos-23-Oct-2005.html. 
  83. Hoffmann, Frank; Ferstler, Howard (2005). Encyclopedia of Recorded Sound. CRC Press. p. 1289. ISBN 978-0-415-93835-8. 
  84. Goldmark, Peter. Maverick inventor; My Turbulent Years at CBS. New York: Saturday Review Press, 1973.
  85. Andy McFadden (9 January 2010). "CD-Recordable FAQ". http://www.cdrfaq.org/faq03.html#S3-8. 
  86. "Mission of Burma 1988 Rykodisc compilation information". Discogs. http://www.discogs.com/Mission-Of-Burma-Mission-Of-Burma/release/1129709. "This Rykodisc release was the first compact disc to contain 80 minutes of music; 78 minutes had previously been the longest length possible to encode on a CD." 
  87. "内海和子/内海和子 ベスト". https://tower.jp/item/973090/%E5%86%85%E6%B5%B7%E5%92%8C%E5%AD%90-%E3%83%99%E3%82%B9%E3%83%88. 
  88. 88.0 88.1 "Ambisonic Info | Mirabilis Recordings". https://ambisonic.info/mirabilis.html. 
  89. "BRUCKNER: Symphony No. 5 in B flat major (original version) — Munich Philharmonic/Christian Thielemann — DGG – Audiophile Audition". Audiophile Audition. 13 July 2005. http://audaud.com/2005/07/bruckner-symphony-no-5-in-b-flat-major-original-version-munich-philharmonicchristian-thielemann-dgg/. 
  90. "Taneyev – Vadim Repin, Ilya Gringolts, Nobuko Imai, Lynn Harrell, Mikhail Pletnev – Chamber Music: Piano Quintet = Klavierquintett • Piano Trio = Klaviertrio". 1 July 2005. https://www.discogs.com/release/6096529-Taneyev-Vadim-Repin-Ilya-Gringolts-Nobuko-Imai-Lynn-Harrell-Mikhail-Pletnev-Chamber-Music-Piano-Quin. 
  91. "Valentina Lisitsa – Études – Amazon.com Music". https://www.amazon.com/%C3%89tudes-Valentina-Lisitsa/dp/B00NVY8VJE. 
  92. "Alphaville Curated By Blank & Jones – So80s (Soeighties) Presents Alphaville". https://www.discogs.com/Alphaville-Curated-By-Blank-Jones-So80s-Soeighties-Presents-Alphaville/master/780651. 
  93. McElhearn, Kirk (12 May 2017). "CDs Longer than 80 Minutes Are Becoming More Common" (in en-US). Kirkville. http://www.kirkville.com/cds-longer-than-80-minutes-are-becoming-more-common/. 
  94. "Die Ärzte – Bäst Of" (in en-US). https://www.discogs.com/Die-%C3%84rzte-B%C3%A4st-Of/release/806980. 
  95. "Fehlerprotoll / Error Check CD" (in de-de). https://just-add-grooves.de/faq-lexikon-cd-vinyl/94-fehlerprotoll-error-check-cd. 
  96. Wiethoff, André (15 April 2011). "Exact Audio Copy: Audiodaten von optischen Speichermedien extrahieren" (in de). pp. 51–53. https://www.hs-rm.de/fileadmin/persons/khofmann/Gastvortraege/Vortragsfolien/20110415-wiethoff.pdf. 
  97. "CD" (in en). Stanford.edu. https://cs.stanford.edu/people/eroberts/cs201/projects/1997-98/optical-media/cd2.html. "An added feature of audio CD's is that in the event of damage, the missing data can be interpolated; that is to say, the information follows a predictable pattern that allows the missing value to be guessed at. So if an audio CD is damaged by dirt or a scratch, the missing data can be averaged from a pattern with no noticeable difference to the listener. This is something the next technology in optical digital memory, CD-ROM, cannot do because an executable program's data doesn't follow a natural law. An interpolation-based guess isn't just slightly different; it's completely wrong. Because of this precision, CD-ROM drives for PC's came later and much more expensive than audio." 
  98. Taylor, Jim. "DVD FAQ". DVD Demystified. http://www.dvddemystified.com/dvdfaq.html. 

External links