Image (category theory)

From HandWiki

In category theory, a branch of mathematics, the image of a morphism is a generalization of the image of a function.

General definition

Given a category [math]\displaystyle{ C }[/math] and a morphism [math]\displaystyle{ f\colon X\to Y }[/math] in [math]\displaystyle{ C }[/math], the image[1] of [math]\displaystyle{ f }[/math] is a monomorphism [math]\displaystyle{ m\colon I\to Y }[/math] satisfying the following universal property:

  1. There exists a morphism [math]\displaystyle{ e\colon X\to I }[/math] such that [math]\displaystyle{ f = m\, e }[/math].
  2. For any object [math]\displaystyle{ I' }[/math] with a morphism [math]\displaystyle{ e'\colon X\to I' }[/math] and a monomorphism [math]\displaystyle{ m'\colon I'\to Y }[/math] such that [math]\displaystyle{ f = m'\, e' }[/math], there exists a unique morphism [math]\displaystyle{ v\colon I\to I' }[/math] such that [math]\displaystyle{ m = m'\, v }[/math].

Remarks:

  1. such a factorization does not necessarily exist.
  2. [math]\displaystyle{ e }[/math] is unique by definition of [math]\displaystyle{ m }[/math] monic.
  3. [math]\displaystyle{ m'e'=f=me=m've }[/math], therefore [math]\displaystyle{ e'=ve }[/math] by [math]\displaystyle{ m' }[/math] monic.
  4. [math]\displaystyle{ v }[/math] is monic.
  5. [math]\displaystyle{ m = m'\, v }[/math] already implies that [math]\displaystyle{ v }[/math] is unique.
Image Theorie des catégories.png

The image of [math]\displaystyle{ f }[/math] is often denoted by [math]\displaystyle{ \text{Im} f }[/math] or [math]\displaystyle{ \text{Im} (f) }[/math].

Proposition: If [math]\displaystyle{ C }[/math] has all equalizers then the [math]\displaystyle{ e }[/math] in the factorization [math]\displaystyle{ f= m\, e }[/math] of (1) is an epimorphism.[2]

Second definition

In a category [math]\displaystyle{ C }[/math] with all finite limits and colimits, the image is defined as the equalizer [math]\displaystyle{ (Im,m) }[/math] of the so-called cokernel pair [math]\displaystyle{ (Y \sqcup_X Y, i_1, i_2) }[/math], which is the cocartesian of a morphism with itself over its domain, which will result in a pair of morphisms [math]\displaystyle{ i_1,i_2:Y\to Y\sqcup_X Y }[/math], on which the equalizer is taken, i.e. the first of the following diagrams is cocartesian, and the second equalizing.[3]

Cokernel pair.png
Equalizer of the cokernel pair, diagram.png

Remarks:

  1. Finite bicompleteness of the category ensures that pushouts and equalizers exist.
  2. [math]\displaystyle{ (Im,m) }[/math] can be called regular image as [math]\displaystyle{ m }[/math] is a regular monomorphism, i.e. the equalizer of a pair of morphisms. (Recall also that an equalizer is automatically a monomorphism).
  3. In an abelian category, the cokernel pair property can be written [math]\displaystyle{ i_1\, f = i_2\, f\ \Leftrightarrow\ (i_1 - i_2)\, f = 0 = 0\, f }[/math] and the equalizer condition [math]\displaystyle{ i_1\, m = i_2\, m\ \Leftrightarrow\ (i_1 - i_2)\, m = 0 \, m }[/math]. Moreover, all monomorphisms are regular.

Theorem — If [math]\displaystyle{ f }[/math] always factorizes through regular monomorphisms, then the two definitions coincide.

Examples

In the category of sets the image of a morphism [math]\displaystyle{ f\colon X \to Y }[/math] is the inclusion from the ordinary image [math]\displaystyle{ \{f(x) ~|~ x \in X\} }[/math] to [math]\displaystyle{ Y }[/math]. In many concrete categories such as groups, abelian groups and (left- or right) modules, the image of a morphism is the image of the correspondent morphism in the category of sets.

In any normal category with a zero object and kernels and cokernels for every morphism, the image of a morphism [math]\displaystyle{ f }[/math] can be expressed as follows:

im f = ker coker f

In an abelian category (which is in particular binormal), if f is a monomorphism then f = ker coker f, and so f = im f.

See also

References

  1. Mitchell, Barry (1965), Theory of categories, Pure and applied mathematics, 17, Academic Press, ISBN 978-0-12-499250-4  Section I.10 p.12
  2. Mitchell, Barry (1965), Theory of categories, Pure and applied mathematics, 17, Academic Press, ISBN 978-0-12-499250-4  Proposition 10.1 p.12
  3. Kashiwara, Masaki; Schapira, Pierre (2006), "Categories and Sheaves", Grundlehren der Mathematischen Wissenschaften, 332, Berlin Heidelberg: Springer, pp. 113–114  Definition 5.1.1