Information matrix test
In econometrics, the information matrix test is used to determine whether a regression model is misspecified. The test was developed by Halbert White,[1] who observed that in a correctly specified model and under standard regularity assumptions, the Fisher information matrix can be expressed in either of two ways: as the outer product of the gradient, or as a function of the Hessian matrix of the log-likelihood function. Consider a linear model [math]\displaystyle{ \mathbf{y} = \mathbf{X} \mathbf{\beta} + \mathbf{u} }[/math], where the errors [math]\displaystyle{ \mathbf{u} }[/math] are assumed to be distributed [math]\displaystyle{ \mathrm{N}(0, \sigma^2 \mathbf{I}) }[/math]. If the parameters [math]\displaystyle{ \beta }[/math] and [math]\displaystyle{ \sigma^2 }[/math] are stacked in the vector [math]\displaystyle{ \mathbf{\theta}^{\mathsf{T}} = \begin{bmatrix} \beta & \sigma^2 \end{bmatrix} }[/math], the resulting log-likelihood function is
- [math]\displaystyle{ \ell (\mathbf{\theta}) = - \frac{n}{2} \log \sigma^2 - \frac{1}{2 \sigma^2} \left( \mathbf{y} - \mathbf{X} \mathbf{\beta} \right)^{\mathsf{T}} \left( \mathbf{y} - \mathbf{X} \mathbf{\beta} \right) }[/math]
The information matrix can then be expressed as
- [math]\displaystyle{ \mathbf{I} (\mathbf{\theta}) = \operatorname{E} \left[ \left( \frac{\partial \ell (\mathbf{\theta}) }{ \partial \mathbf{\theta} } \right) \left( \frac{\partial \ell (\mathbf{\theta}) }{ \partial \mathbf{\theta} } \right)^{\mathsf{T}} \right] }[/math]
that is the expected value of the outer product of the gradient or score. Second, it can be written as the negative of the Hessian matrix of the log-likelihood function
- [math]\displaystyle{ \mathbf{I} (\mathbf{\theta}) = - \operatorname{E} \left[ \frac{\partial^2 \ell (\mathbf{\theta}) }{ \partial \mathbf{\theta} \, \partial \mathbf{\theta}^{\mathsf{T}}} \right] }[/math]
If the model is correctly specified, both expressions should be equal. Combining the equivalent forms yields
- [math]\displaystyle{ \mathbf{\Delta}(\mathbf{\theta}) = \sum_{i=1}^n \left[ \frac{\partial^2 \ell(\mathbf{\theta}) }{ \partial \mathbf{\theta} \, \partial \mathbf{\theta}^{\mathsf{T}} } + \frac{\partial \ell(\mathbf{\theta}) }{ \partial \mathbf{\theta} } \frac{\partial \ell (\mathbf{\theta}) }{ \partial \mathbf{\theta} } \right] }[/math]
where [math]\displaystyle{ \mathbf{\Delta} (\mathbf{\theta}) }[/math] is an [math]\displaystyle{ (r \times r) }[/math] random matrix, where [math]\displaystyle{ r }[/math] is the number of parameters. White showed that the elements of [math]\displaystyle{ n^{-1/2} \mathbf{\Delta} ( \mathbf{\hat{\theta}} ) }[/math], where [math]\displaystyle{ \mathbf{\hat{\theta}} }[/math] is the MLE, are asymptotically normally distributed with zero means when the model is correctly specified.[2] In small samples, however, the test generally performs poorly.[3]
References
- ↑ White, Halbert (1982). "Maximum Likelihood Estimation of Misspecified Models". Econometrica 50 (1): 1–25. doi:10.2307/1912526.
- ↑ Godfrey, L. G. (1988). Misspecification Tests in Econometrics. Cambridge University Press. pp. 35–37. ISBN 0-521-26616-5. https://books.google.com/books?id=apXgcgoy7OgC&pg=PA35.
- ↑ Orme, Chris (1990). "The Small-Sample Performance of the Information-Matrix Test". Journal of Econometrics 46 (3): 309–331. doi:10.1016/0304-4076(90)90012-I.
Further reading
- Krämer, W.; Sonnberger, H. (1986). The Linear Regression Model Under Test. Heidelberg: Physica-Verlag. pp. 105–110. ISBN 3-7908-0356-1. https://books.google.com/books?id=NSvqCAAAQBAJ&pg=PA105.
- White, Halbert (1994). "Information Matrix Testing". Estimation, Inference and Specification Analysis. New York: Cambridge University Press. pp. 300–344. ISBN 0-521-25280-6. https://books.google.com/books?id=hnNpQSf7ZlAC&pg=PA300.
Original source: https://en.wikipedia.org/wiki/Information matrix test.
Read more |