Inverse gamma function

From HandWiki
Short description: Inverse of the gamma function
Graph of an inverse gamma function
Plot of inverse gamma function in the complex plane

In mathematics, the inverse gamma function [math]\displaystyle{ \Gamma^{-1}(x) }[/math] is the inverse function of the gamma function. In other words, [math]\displaystyle{ y = \Gamma^{-1}(x) }[/math] whenever [math]\displaystyle{ \Gamma(y)=x }[/math]. For example, [math]\displaystyle{ \Gamma^{-1}(24)=5 }[/math].[1] Usually, the inverse gamma function refers to the principal branch with domain on the real interval [math]\displaystyle{ \left[\beta, +\infty\right) }[/math] and image on the real interval [math]\displaystyle{ \left[\alpha, +\infty\right) }[/math], where [math]\displaystyle{ \beta = 0.8856031\ldots }[/math][2] is the minimum value of the gamma function on the positive real axis and [math]\displaystyle{ \alpha = \Gamma^{-1}(\beta) = 1.4616321\ldots }[/math][3] is the location of that minimum.[4]

Definition

The inverse gamma function may be defined by the following integral representation[5] [math]\displaystyle{ \Gamma^{-1}(x)=a+bx+\int_{-\infty}^{\Gamma(\alpha)}\left(\frac{1}{x-t}-\frac{t}{t^{2}-1}\right)d\mu(t)\,, }[/math] where [math]\displaystyle{ \mu (t) }[/math] is a Borel measure such that [math]\displaystyle{ \int_{-\infty}^{\Gamma\left(\alpha\right)}\left(\frac{1}{t^{2}+1}\right)d\mu(t)\lt \infty \,, }[/math] and [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math] are real numbers with [math]\displaystyle{ b \geqq 0 }[/math].

Approximation

To compute the branches of the inverse gamma function one can first compute the Taylor series of [math]\displaystyle{ \Gamma(x) }[/math] near [math]\displaystyle{ \alpha }[/math]. The series can then be truncated and inverted, which yields successively better approximations to [math]\displaystyle{ \Gamma^{-1}(x) }[/math]. For instance, we have the quadratic approximation:[6]

[math]\displaystyle{ \Gamma^{-1}\left(x\right)\approx\alpha+\sqrt{\frac{2\left(x-\Gamma\left(\alpha\right)\right)}{\Psi\left(1,\ \alpha\right)\Gamma\left(\alpha\right)}}. }[/math]

The inverse gamma function also has the following asymptotic formula[7] [math]\displaystyle{ \Gamma^{-1}(x)\sim\frac{1}{2}+\frac{\ln\left(\frac{x}{\sqrt{2\pi}}\right)}{W_{0}\left(e^{-1}\ln\left(\frac{x}{\sqrt{2\pi}}\right)\right)}\,, }[/math] where [math]\displaystyle{ W_0(x) }[/math] is the Lambert W function. The formula is found by inverting the Stirling approximation, and so can also be expanded into an asymptotic series.

Series expansion

To obtain a series expansion of the inverse gamma function one can first compute the series expansion of the reciprocal gamma function [math]\displaystyle{ \frac{1}{\Gamma(x)} }[/math] near the poles at the negative integers, and then invert the series.

Setting [math]\displaystyle{ z=\frac{1}{x} }[/math] then yields, for the n th branch [math]\displaystyle{ \Gamma_{n}^{-1}(z) }[/math] of the inverse gamma function ([math]\displaystyle{ n\ge 0 }[/math])[8] [math]\displaystyle{ \Gamma_{n}^{-1}(z)=-n+\frac{\left(-1\right)^{n}}{n!z}+\frac{\psi^{(0)}\left(n+1\right)}{\left(n!z\right)^2}+\frac{\left(-1\right)^{n}\left(\pi^{2}+9\psi^{(0)}\left(n+1\right)^{2}-3\psi^{(1)}\left(n+1\right)\right)}{6\left(n!z\right)^3}+O\left(\frac{1}{z^{4}}\right)\,, }[/math] where [math]\displaystyle{ \psi^{(n)}(x) }[/math] is the polygamma function.

References

  1. Borwein, Jonathan M.; Corless, Robert M. (2017). "Gamma and Factorial in the Monthly". The American Mathematical Monthly 125 (5): 400–424. doi:10.1080/00029890.2018.1420983. 
  2. OEISA030171
  3. OEISA030169
  4. Uchiyama, Mitsuru (April 2012). "The principal inverse of the gamma function". Proceedings of the American Mathematical Society 140 (4): 1347. doi:10.1090/S0002-9939-2011-11023-2. 
  5. Pedersen, Henrik (9 September 2013). ""Inverses of gamma functions"". Constructive Approximation 7 (2): 251–267. doi:10.1007/s00365-014-9239-1. https://link.springer.com/article/10.1007/s00365-014-9239-1. 
  6. Corless, Robert M.; Amenyou, Folitse Komla; Jeffrey, David (2017). "Properties and Computation of the Functional Inverse of Gamma". International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). pp. 65. doi:10.1109/SYNASC.2017.00020. ISBN 978-1-5386-2626-9. 
  7. Amenyou, Folitse Komla; Jeffrey, David (2018). "Properties and Computation of the inverse of the Gamma Function" (MS). p. 28.
  8. Couto, Ana Carolina Camargos; Jeffrey, David; Corless, Robert (November 2020). "The Inverse Gamma Function and its Numerical Evaluation". Maple Conference Proceedings: Section 8. https://www.maplesoft.com/mapleconference/2020/highlights.aspx.