Polygamma function
In mathematics, the polygamma function of order m is a meromorphic function on the complex numbers [math]\displaystyle{ \mathbb{C} }[/math] defined as the (m + 1)th derivative of the logarithm of the gamma function:
- [math]\displaystyle{ \psi^{(m)}(z) := \frac{\mathrm{d}^m}{\mathrm{d}z^m} \psi(z) = \frac{\mathrm{d}^{m+1}}{\mathrm{d}z^{m+1}} \ln\Gamma(z). }[/math]
Thus
- [math]\displaystyle{ \psi^{(0)}(z) = \psi(z) = \frac{\Gamma'(z)}{\Gamma(z)} }[/math]
holds where ψ(z) is the digamma function and Γ(z) is the gamma function. They are holomorphic on [math]\displaystyle{ \mathbb{C} \backslash\mathbb{Z}_{\le0} }[/math]. At all the nonpositive integers these polygamma functions have a pole of order m + 1. The function ψ(1)(z) is sometimes called the trigamma function.
ln Γ(z) | ψ(0)(z) | ψ(1)(z) |
ψ(2)(z) | ψ(3)(z) | ψ(4)(z) |
Integral representation
When m > 0 and Re z > 0, the polygamma function equals
- [math]\displaystyle{ \begin{align} \psi^{(m)}(z) &= (-1)^{m+1}\int_0^\infty \frac{t^m e^{-zt}}{1-e^{-t}}\,\mathrm{d}t \\ &= -\int_0^1 \frac{t^{z-1}}{1-t}(\ln t)^m\,\mathrm{d}t\\ &= (-1)^{m+1}m!\zeta(m+1,z) \end{align} }[/math]
where [math]\displaystyle{ \zeta(s,q) }[/math] is the Hurwitz zeta function.
This expresses the polygamma function as the Laplace transform of (−1)m+1 tm/1 − e−t. It follows from Bernstein's theorem on monotone functions that, for m > 0 and x real and non-negative, (−1)m+1 ψ(m)(x) is a completely monotone function.
Setting m = 0 in the above formula does not give an integral representation of the digamma function. The digamma function has an integral representation, due to Gauss, which is similar to the m = 0 case above but which has an extra term e−t/t.
Recurrence relation
It satisfies the recurrence relation
- [math]\displaystyle{ \psi^{(m)}(z+1)= \psi^{(m)}(z) + \frac{(-1)^m\,m!}{z^{m+1}} }[/math]
which – considered for positive integer argument – leads to a presentation of the sum of reciprocals of the powers of the natural numbers:
- [math]\displaystyle{ \frac{\psi^{(m)}(n)}{(-1)^{m+1}\,m!} = \zeta(1+m) - \sum_{k=1}^{n-1} \frac{1}{k^{m+1}} = \sum_{k=n}^\infty \frac{1}{k^{m+1}} \qquad m \ge 1 }[/math]
and
- [math]\displaystyle{ \psi^{(0)}(n) = -\gamma\ + \sum_{k=1}^{n-1}\frac{1}{k} }[/math]
for all [math]\displaystyle{ n \in \mathbb{N} }[/math], where [math]\displaystyle{ \gamma }[/math] is the Euler–Mascheroni constant. Like the log-gamma function, the polygamma functions can be generalized from the domain [math]\displaystyle{ \mathbb{N} }[/math] uniquely to positive real numbers only due to their recurrence relation and one given function-value, say ψ(m)(1), except in the case m = 0 where the additional condition of strict monotonicity on [math]\displaystyle{ \mathbb{R}^{+} }[/math] is still needed. This is a trivial consequence of the Bohr–Mollerup theorem for the gamma function where strictly logarithmic convexity on [math]\displaystyle{ \mathbb{R}^{+} }[/math] is demanded additionally. The case m = 0 must be treated differently because ψ(0) is not normalizable at infinity (the sum of the reciprocals doesn't converge).
Reflection relation
- [math]\displaystyle{ (-1)^m \psi^{(m)} (1-z) - \psi^{(m)} (z) = \pi \frac{\mathrm{d}^m}{\mathrm{d} z^m} \cot{\pi z} = \pi^{m+1} \frac{P_m(\cos{\pi z})}{\sin^{m+1}(\pi z)} }[/math]
where Pm is alternately an odd or even polynomial of degree |m − 1| with integer coefficients and leading coefficient (−1)m⌈2m − 1⌉. They obey the recursion equation
- [math]\displaystyle{ \begin{align} P_0(x) &= x \\ P_{m+1}(x) &= - \left( (m+1)xP_m(x)+\left(1-x^2\right)P'_m(x)\right).\end{align} }[/math]
Multiplication theorem
The multiplication theorem gives
- [math]\displaystyle{ k^{m+1} \psi^{(m)}(kz) = \sum_{n=0}^{k-1} \psi^{(m)}\left(z+\frac{n}{k}\right)\qquad m \ge 1 }[/math]
and
- [math]\displaystyle{ k \psi^{(0)}(kz) = k\ln{k} + \sum_{n=0}^{k-1} \psi^{(0)}\left(z+\frac{n}{k}\right) }[/math]
for the digamma function.
Series representation
The polygamma function has the series representation
- [math]\displaystyle{ \psi^{(m)}(z) = (-1)^{m+1}\, m! \sum_{k=0}^\infty \frac{1}{(z+k)^{m+1}} }[/math]
which holds for integer values of m > 0 and any complex z not equal to a negative integer. This representation can be written more compactly in terms of the Hurwitz zeta function as
- [math]\displaystyle{ \psi^{(m)}(z) = (-1)^{m+1}\, m!\, \zeta (m+1,z). }[/math]
This relation can for example be used to compute the special values[1]
- [math]\displaystyle{ \psi^{(2n-1)}\left(\frac14\right) = \frac{4^{2n-1}}{2n}\left(\pi^{2n}(2^{2n}-1)|B_{2n}|+2(2n)!\beta(2n)\right); }[/math]
- [math]\displaystyle{ \psi^{(2n-1)}\left(\frac34\right) = \frac{4^{2n-1}}{2n}\left(\pi^{2n}(2^{2n}-1)|B_{2n}|-2(2n)!\beta(2n)\right); }[/math]
- [math]\displaystyle{ \psi^{(2n)}\left(\frac14\right) = -2^{2n-1}\left(\pi^{2n+1}|E_{2n}|+2(2n)!(2^{2n+1}-1)\zeta(2n+1)\right); }[/math]
- [math]\displaystyle{ \psi^{(2n)}\left(\frac34\right) = 2^{2n-1}\left(\pi^{2n+1}|E_{2n}|-2(2n)!(2^{2n+1}-1)\zeta(2n+1)\right). }[/math]
Alternately, the Hurwitz zeta can be understood to generalize the polygamma to arbitrary, non-integer order.
One more series may be permitted for the polygamma functions. As given by Schlömilch,
- [math]\displaystyle{ \frac{1}{\Gamma(z)} = z e^{\gamma z} \prod_{n=1}^\infty \left(1 + \frac{z}{n}\right) e^{-\frac{z}{n}}. }[/math]
This is a result of the Weierstrass factorization theorem. Thus, the gamma function may now be defined as:
- [math]\displaystyle{ \Gamma(z) = \frac{e^{-\gamma z}}{z} \prod_{n=1}^\infty \left(1 + \frac{z}{n}\right)^{-1} e^\frac{z}{n}. }[/math]
Now, the natural logarithm of the gamma function is easily representable:
- [math]\displaystyle{ \ln \Gamma(z) = -\gamma z - \ln(z) + \sum_{k=1}^\infty \left( \frac{z}{k} - \ln\left(1 + \frac{z}{k}\right) \right). }[/math]
Finally, we arrive at a summation representation for the polygamma function:
- [math]\displaystyle{ \psi^{(n)}(z) = \frac{\mathrm{d}^{n+1}}{\mathrm{d}z^{n+1}}\ln \Gamma(z) = -\gamma \delta_{n0} - \frac{(-1)^n n!}{z^{n+1}} + \sum_{k=1}^{\infty} \left(\frac{1}{k} \delta_{n0} - \frac{(-1)^n n!}{(k+z)^{n+1}}\right) }[/math]
Where δn0 is the Kronecker delta.
Also the Lerch transcendent
- [math]\displaystyle{ \Phi(-1, m+1, z) = \sum_{k=0}^\infty \frac{(-1)^k}{(z+k)^{m+1}} }[/math]
can be denoted in terms of polygamma function
- [math]\displaystyle{ \Phi(-1, m+1, z)=\frac1{(-2)^{m+1}m!}\left(\psi^{(m)}\left(\frac{z}{2}\right)-\psi^{(m)}\left(\frac{z+1}{2}\right)\right) }[/math]
Taylor series
The Taylor series at z = -1 is
- [math]\displaystyle{ \psi^{(m)}(z+1)= \sum_{k=0}^\infty (-1)^{m+k+1} \frac {(m+k)!}{k!} \zeta (m+k+1) z^k \qquad m \ge 1 }[/math]
and
- [math]\displaystyle{ \psi^{(0)}(z+1)= -\gamma +\sum_{k=1}^\infty (-1)^{k+1}\zeta (k+1) z^k }[/math]
which converges for |z| < 1. Here, ζ is the Riemann zeta function. This series is easily derived from the corresponding Taylor series for the Hurwitz zeta function. This series may be used to derive a number of rational zeta series.
Asymptotic expansion
These non-converging series can be used to get quickly an approximation value with a certain numeric at-least-precision for large arguments:
- [math]\displaystyle{ \psi^{(m)}(z) \sim (-1)^{m+1}\sum_{k=0}^{\infty}\frac{(k+m-1)!}{k!}\frac{B_k}{z^{k+m}} \qquad m \ge 1 }[/math]
and
- [math]\displaystyle{ \psi^{(0)}(z) \sim \ln(z) - \sum_{k=1}^\infty \frac{B_k}{k z^k} }[/math]
where we have chosen B1 = 1/2, i.e. the Bernoulli numbers of the second kind.
Inequalities
The hyperbolic cotangent satisfies the inequality
- [math]\displaystyle{ \frac{t}{2}\operatorname{coth}\frac{t}{2} \ge 1, }[/math]
and this implies that the function
- [math]\displaystyle{ \frac{t^m}{1 - e^{-t}} - \left(t^{m-1} + \frac{t^m}{2}\right) }[/math]
is non-negative for all m ≥ 1 and t ≥ 0. It follows that the Laplace transform of this function is completely monotone. By the integral representation above, we conclude that
- [math]\displaystyle{ (-1)^{m+1}\psi^{(m)}(x) - \left(\frac{(m-1)!}{x^m} + \frac{m!}{2x^{m+1}}\right) }[/math]
is completely monotone. The convexity inequality et ≥ 1 + t implies that
- [math]\displaystyle{ \left(t^{m-1} + t^m\right) - \frac{t^m}{1 - e^{-t}} }[/math]
is non-negative for all m ≥ 1 and t ≥ 0, so a similar Laplace transformation argument yields the complete monotonicity of
- [math]\displaystyle{ \left(\frac{(m-1)!}{x^m} + \frac{m!}{x^{m+1}}\right) - (-1)^{m+1}\psi^{(m)}(x). }[/math]
Therefore, for all m ≥ 1 and x > 0,
- [math]\displaystyle{ \frac{(m-1)!}{x^m} + \frac{m!}{2x^{m+1}} \le (-1)^{m+1}\psi^{(m)}(x) \le \frac{(m-1)!}{x^m} + \frac{m!}{x^{m+1}}. }[/math]
Since both bounds are strictly positive for [math]\displaystyle{ x\gt 0 }[/math], we have:
- [math]\displaystyle{ \ln\Gamma(x) }[/math] is strictly convex.
- For [math]\displaystyle{ m=0 }[/math], the digamma function, [math]\displaystyle{ \psi(x)=\psi^{(0)}(x) }[/math], is strictly monotonic increasing and strictly concave.
- For [math]\displaystyle{ m }[/math] odd, the polygamma functions, [math]\displaystyle{ \psi^{(1)},\psi^{(3)},\psi^{(5)},\ldots }[/math], are strictly positive, strictly monotonic decreasing and strictly convex.
- For [math]\displaystyle{ m }[/math] even the polygamma functions, [math]\displaystyle{ \psi^{(2)},\psi^{(4)},\psi^{(6)},\ldots }[/math], are strictly negative, strictly monotonic increasing and strictly concave.
This can be seen in the first plot above.
Trigamma bounds and asymptote
For the case of the trigamma function ([math]\displaystyle{ m=1 }[/math]) the final inequality formula above for [math]\displaystyle{ x\gt 0 }[/math], can be rewritten as:
- [math]\displaystyle{ \frac{x+\frac12}{x^2} \le \psi^{(1)}(x)\le \frac{x+1}{x^2} }[/math]
so that for [math]\displaystyle{ x\gg1 }[/math]: [math]\displaystyle{ \psi^{(1)}(x)\approx\frac1x }[/math].
See also
- Factorial
- Gamma function
- Digamma function
- Trigamma function
- Generalized polygamma function
References
- ↑ Kölbig, K. S. (1996). "The polygamma function psi^k(x) for x=1/4 and x=3/4". J. Comput. Appl. Math. 75 (1): 43–46. doi:10.1016/S0377-0427(96)00055-6.
- Abramowitz, Milton; Stegun, Irene A. (1964). "Section 6.4". Handbook of Mathematical Functions. New York: Dover Publications. ISBN 978-0-486-61272-0. https://personal.math.ubc.ca/~cbm/aands/page_260.htm.
Original source: https://en.wikipedia.org/wiki/Polygamma function.
Read more |