Inverse matrix gamma distribution

From HandWiki
Inverse matrix gamma
Notation [math]\displaystyle{ {\rm IMG}_{p}(\alpha,\beta,\boldsymbol\Psi) }[/math]
Parameters

[math]\displaystyle{ \alpha \gt (p - 1)/2 }[/math] shape parameter
[math]\displaystyle{ \beta \gt 0 }[/math] scale parameter

[math]\displaystyle{ \boldsymbol\Psi }[/math] scale (positive-definite real [math]\displaystyle{ p\times p }[/math] matrix)
Support [math]\displaystyle{ \mathbf{X} }[/math] positive-definite real [math]\displaystyle{ p\times p }[/math] matrix
PDF

[math]\displaystyle{ \frac{|\boldsymbol\Psi|^{\alpha}}{\beta^{p\alpha}\Gamma_p(\alpha)} |\mathbf{X}|^{-\alpha-(p+1)/2}\exp\left(-\frac{1}{\beta}{\rm tr}\left(\boldsymbol\Psi\mathbf{X}^{-1}\right)\right) }[/math]

In statistics, the inverse matrix gamma distribution is a generalization of the inverse gamma distribution to positive-definite matrices.[1] It is a more general version of the inverse Wishart distribution, and is used similarly, e.g. as the conjugate prior of the covariance matrix of a multivariate normal distribution or matrix normal distribution. The compound distribution resulting from compounding a matrix normal with an inverse matrix gamma prior over the covariance matrix is a generalized matrix t-distribution.[citation needed]

This reduces to the inverse Wishart distribution with [math]\displaystyle{ \nu }[/math] degrees of freedom when [math]\displaystyle{ \beta=2, \alpha=\frac{\nu}{2} }[/math].

See also

References

  1. Iranmanesha, Anis; Arashib, M.; Tabatabaeya, S. M. M. (2010). "On Conditional Applications of Matrix Variate Normal Distribution". Iranian Journal of Mathematical Sciences and Informatics 5 (2): 33–43. https://www.sid.ir/En/Journal/ViewPaper.aspx?ID=220524.