Inverse matrix gamma distribution

From HandWiki
Inverse matrix gamma
Notation IMGp(α,β,Ψ)
Parameters

α>(p1)/2 shape parameter
β>0 scale parameter

Ψ scale (positive-definite real p×p matrix)
Support 𝐗 positive-definite real p×p matrix
PDF

|Ψ|αβpαΓp(α)|𝐗|α(p+1)/2exp(1βtr(Ψ𝐗1))

In statistics, the inverse matrix gamma distribution is a generalization of the inverse gamma distribution to positive-definite matrices.[1] It is a more general version of the inverse Wishart distribution, and is used similarly, e.g. as the conjugate prior of the covariance matrix of a multivariate normal distribution or matrix normal distribution. The compound distribution resulting from compounding a matrix normal with an inverse matrix gamma prior over the covariance matrix is a generalized matrix t-distribution.[citation needed]

This reduces to the inverse Wishart distribution with ν degrees of freedom when β=2,α=ν2.

See also

References

  1. Iranmanesha, Anis; Arashib, M.; Tabatabaeya, S. M. M. (2010). "On Conditional Applications of Matrix Variate Normal Distribution". Iranian Journal of Mathematical Sciences and Informatics 5 (2): 33–43. https://www.sid.ir/En/Journal/ViewPaper.aspx?ID=220524.