Inverse tangent integral
The inverse tangent integral is a special function, defined by:
- [math]\displaystyle{ \operatorname{Ti}_2(x) = \int_0^x \frac{\arctan t}{t} \, dt }[/math]
Equivalently, it can be defined by a power series, or in terms of the dilogarithm, a closely related special function.
Definition
The inverse tangent integral is defined by:
- [math]\displaystyle{ \operatorname{Ti}_2(x) = \int_0^x \frac{\arctan t}{t} \, dt }[/math]
The arctangent is taken to be the principal branch; that is, −π/2 < arctan(t) < π/2 for all real t.[1]
Its power series representation is
- [math]\displaystyle{ \operatorname{Ti}_2(x) = x - \frac{x^3}{3^2} + \frac{x^5}{5^2} - \frac{x^7}{7^2} + \cdots }[/math]
which is absolutely convergent for [math]\displaystyle{ |x| \le 1. }[/math][1]
The inverse tangent integral is closely related to the dilogarithm [math]\displaystyle{ \operatorname{Li}_2(z) = \sum_{n=1}^\infty \frac{z^n}{n^2} }[/math] and can be expressed simply in terms of it:
- [math]\displaystyle{ \operatorname{Ti}_2(z) = \frac{1}{2i} \left( \operatorname{Li}_2(iz) - \operatorname{Li}_2(-iz) \right) }[/math]
That is,
- [math]\displaystyle{ \operatorname{Ti}_2(x) = \operatorname{Im}(\operatorname{Li}_2(ix)) }[/math]
for all real x.[1]
Properties
The inverse tangent integral is an odd function:[1]
- [math]\displaystyle{ \operatorname{Ti}_2(-x) = -\operatorname{Ti}_2(x) }[/math]
The values of Ti2(x) and Ti2(1/x) are related by the identity
- [math]\displaystyle{ \operatorname{Ti}_2(x) - \operatorname{Ti}_2 \left(\frac{1}{x} \right) = \frac{\pi}{2} \log x }[/math]
valid for all x > 0 (or, more generally, for Re(x) > 0). This can be proven by differentiating and using the identity [math]\displaystyle{ \arctan(t) + \arctan(1/t) = \pi/2 }[/math].[2][3]
The special value Ti2(1) is Catalan's constant [math]\displaystyle{ 1 - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \cdots \approx 0.915966 }[/math].[3]
Generalizations
Similar to the polylogarithm [math]\displaystyle{ \operatorname{Li}_n(z) = \sum_{k=1}^\infty \frac{z^k}{k^n} }[/math], the function
- [math]\displaystyle{ \operatorname{Ti}_n(x) = x - \frac{x^3}{3^n} + \frac{x^5}{5^n} - \frac{x^7}{7^n} + \cdots }[/math]
is defined analogously. This satisfies the recurrence relation:[4]
- [math]\displaystyle{ \operatorname{Ti}_n(x) = \int_0^x \frac{\operatorname{Ti}_{n-1}(t)}{t} \, dt }[/math]
Relation to other special functions
The inverse tangent integral is related to the Legendre chi function [math]\displaystyle{ \chi_2(x) = x + \frac{x^3}{3^2} + \frac{x^5}{5^2} + \cdots }[/math] by:[1]
- [math]\displaystyle{ \operatorname{Ti}_2(x) = -i \chi_2(ix) }[/math]
Note that [math]\displaystyle{ \chi_2(x) }[/math] can be expressed as [math]\displaystyle{ \int_0^x \frac{\operatorname{artanh} t}{t} \, dt }[/math], similar to the inverse tangent integral but with the inverse hyperbolic tangent instead.
The inverse tangent integral can also be written in terms of the Lerch transcendent [math]\displaystyle{ \Phi(z,s,a) = \sum_{n=0}^\infty \frac{z^n}{(n+a)^s}: }[/math][5]
- [math]\displaystyle{ \operatorname{Ti}_2(x) = \frac{1}{4} x \Phi(-x^2, 2, 1/2) }[/math]
History
The notation Ti2 and Tin is due to Lewin. Spence (1809)[6] studied the function, using the notation [math]\displaystyle{ \overset{n}{\operatorname{C}}(x) }[/math]. The function was also studied by Ramanujan.[2]
References
- ↑ 1.0 1.1 1.2 1.3 1.4 Lewin 1981, pp. 38–39, Section 2.1
- ↑ 2.0 2.1 Ramanujan, S. (1915). "On the integral [math]\displaystyle{ \int_0^x \frac{\tan^{-1} t}{t} \, dt }[/math]". Journal of the Indian Mathematical Society 7: 93–96. Appears in: Collected Papers of Srinivasa Ramanujan. 1927. pp. 40–43.
- ↑ 3.0 3.1 Lewin 1981, pp. 39–40, Section 2.2
- ↑ Lewin 1981, p. 190, Section 7.1.2
- ↑ Weisstein, Eric W.. "Inverse Tangent Integral". http://mathworld.wolfram.com/InverseTangentIntegral.html.
- ↑ Spence, William (1809). An essay on the theory of the various orders of logarithmic transcendents; with an inquiry into their applications to the integral calculus and the summation of series. London. https://babel.hathitrust.org/cgi/pt?id=uc1.c3118082.
- Lewin, L. (1958). Dilogarithms and Associated Functions. London: Macdonald.
- Lewin, L. (1981). Polylogarithms and Associated Functions. New York: North-Holland. ISBN 978-0-444-00550-2.
Original source: https://en.wikipedia.org/wiki/Inverse tangent integral.
Read more |