Catalan's constant
In mathematics, Catalan's constant G, is defined by
- [math]\displaystyle{ G = \beta(2) = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)^2} = \frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \frac{1}{9^2} - \cdots, }[/math]
where β is the Dirichlet beta function. Its numerical value[1] is approximately (sequence A006752 in the OEIS)
- G = 0.915965594177219015054603514932384110774…
Unsolved problem in mathematics: Is Catalan's constant irrational? If so, is it transcendental? (more unsolved problems in mathematics)
|
It is not known whether G is irrational, let alone transcendental.[2] G has been called "arguably the most basic constant whose irrationality and transcendence (though strongly suspected) remain unproven".[3]
Catalan's constant was named after Eugène Charles Catalan, who found quickly-converging series for its calculation and published a memoir on it in 1865.[4][5]
Uses
In low-dimensional topology, Catalan's constant is 1/4 of the volume of an ideal hyperbolic octahedron, and therefore 1/4 of the hyperbolic volume of the complement of the Whitehead link.Cite error: Closing </ref>
missing for <ref>
tag spanning trees,[6] and Hamiltonian cycles of grid graphs.[7]
In number theory, Catalan's constant appears in a conjectured formula for the asymptotic number of primes of the form [math]\displaystyle{ n^2+1 }[/math] according to Hardy and Littlewood's Conjecture F. However, it is an unsolved problem (one of Landau's problems) whether there are even infinitely many primes of this form.[8]
Catalan's constant also appears in the calculation of the mass distribution of spiral galaxies.[9][10]
Known digits
The number of known digits of Catalan's constant G has increased dramatically during the last decades. This is due both to the increase of performance of computers as well as to algorithmic improvements.[11]
Date | Decimal digits | Computation performed by |
---|---|---|
1832 | 16 | Thomas Clausen |
1858 | 19 | Carl Johan Danielsson Hill |
1864 | 14 | Eugène Charles Catalan |
1877 | 20 | James W. L. Glaisher |
1913 | 32 | James W. L. Glaisher |
1990 | 20000 | Greg J. Fee |
1996 | 50000 | Greg J. Fee |
August 14, 1996 | 100000 | Greg J. Fee & Simon Plouffe |
September 29, 1996 | 300000 | Thomas Papanikolaou |
1996 | 1500000 | Thomas Papanikolaou |
1997 | 3379957 | Patrick Demichel |
January 4, 1998 | 12500000 | Xavier Gourdon |
2001 | 100000500 | Xavier Gourdon & Pascal Sebah |
2002 | 201000000 | Xavier Gourdon & Pascal Sebah |
October 2006 | 5000000000 | Shigeru Kondo & Steve Pagliarulo[12] |
August 2008 | 10000000000 | Shigeru Kondo & Steve Pagliarulo[11] |
January 31, 2009 | 15510000000 | Alexander J. Yee & Raymond Chan[13] |
April 16, 2009 | 31026000000 | Alexander J. Yee & Raymond Chan[13] |
June 7, 2015 | 200000001100 | Robert J. Setti[14] |
April 12, 2016 | 250000000000 | Ron Watkins[14] |
February 16, 2019 | 300000000000 | Tizian Hanselmann[14] |
March 29, 2019 | 500000000000 | Mike A & Ian Cutress[14] |
July 16, 2019 | 600000000100 | Seungmin Kim[15][16] |
September 6, 2020 | 1000000001337 | Andrew Sun[17] |
March 9, 2022 | 1200000000100 | Seungmin Kim[17] |
Integral identities
As Seán Stewart writes, "There is a rich and seemingly endless source of definite integrals that can be equated to or expressed in terms of Catalan's constant."[18] Some of these expressions include: [math]\displaystyle{ \begin{align} G &= -\frac{1}{\pi i}\int_{0}^{\frac{\pi}{2}} \ln\ln \tan x \ln \tan x \,dx \\[3pt] G &= \iint_{[0,1]^2} \! \frac{1}{1+x^2 y^2} \,dx\, dy \\[3pt] G &= \int_0^1\int_0^{1-x} \frac{1}{1 -x^2-y^2} \,dy\,dx \\[3pt] G &= \int_1^\infty \frac{\ln t}{1 + t^2} \,dt \\[3pt] G &= -\int_0^1 \frac{\ln t}{1 + t^2} \,dt \\[3pt] G &= \frac{1}{2} \int_0^\frac{\pi}{2} \frac{t}{\sin t} \,dt \\[3pt] G &= \int_0^\frac{\pi}{4} \ln \cot t \,dt \\[3pt] G &= \frac{1}{2} \int_0^\frac{\pi}{2} \ln \left( \sec t +\tan t \right) \,dt \\[3pt] G &= \int_0^1 \frac{\arccos t}{\sqrt{1+t^2}} \,dt \\[3pt] G &= \int_0^1 \frac{\operatorname{arcsinh} t}{\sqrt{1-t^2}} \,dt \\[3pt] G &= \frac{1}{2} \int_0^\infty \frac{\operatorname{arctan} t}{t\sqrt{1+t^2}} \,dt \\[3pt] G &= \frac{1}{2} \int_0^1 \frac{\operatorname{arctanh} t}{\sqrt{1-t^2}} \,dt \\[3pt] G &= \int_0^\infty \arccot e^{t} \,dt \\[3pt] G &= \frac{1}{4} \int_0^{{\pi^2}/{4}} \csc \sqrt{t} \,dt \\[3pt] G &= \frac{1}{16} \left(\pi^2 + 4\int_1^\infty \arccsc^2 t \,dt\right) \\[3pt] G &= \frac{1}{2} \int_0^\infty \frac{t}{\cosh t} \,dt \\[3pt] G &= \frac{\pi}{2} \int_1^\infty \frac{\left(t^4-6t^2+1\right)\ln\ln t}{\left(1+t^2\right)^3} \,dt \\[3pt] G &= \frac{1}{2} \int_0^\infty \frac{\arcsin \left(\sin t\right)}{t} \,dt \\[3pt] G &= 1 + \lim_{\alpha\to{1^-}}\!\left\{\int_0^{\alpha}\!\frac{\left(1+6t^2+t^4\right)\arctan{t}}{t\left(1-t^2\right)^2}\, dt + 2\operatorname{artanh}{\alpha} - \frac{\pi\alpha}{1-\alpha^2} \right\} \\[3pt] G &= 1 - \frac18 \iint_{\R^2}\!\!\frac{x\sin\left(2xy/\pi\right)}{\,\left(x^2+\pi^2\right)\cosh x\sinh y\,} \,dx\,dy \\[3pt] G &= \int_{0}^{\infty}\int_{0}^{\infty}\frac{\sqrt[4]{x} \left(\sqrt{x} \sqrt{y}-1\right)}{(x+1)^2 \sqrt[4]{y} (y+1)^2 \log (x y)}dxdy \end{align} }[/math]
where the last three formulas are related to Malmsten's integrals.[19]
If K(k) is the complete elliptic integral of the first kind, as a function of the elliptic modulus k, then [math]\displaystyle{ G = \tfrac{1}{2} \int_0^1 \mathrm{K}(k)\,dk }[/math]
If E(k) is the complete elliptic integral of the second kind, as a function of the elliptic modulus k, then [math]\displaystyle{ G = -\tfrac{1}{2}+\int_0^1 \mathrm{E}(k)\,dk }[/math]
With the gamma function Γ(x + 1) = x! [math]\displaystyle{ \begin{align} G &= \frac{\pi}{4} \int_0^1 \Gamma\left(1+\frac{x}{2}\right)\Gamma\left(1-\frac{x}{2}\right)\,dx \\ &= \frac{\pi}{2} \int_0^\frac12\Gamma(1+y)\Gamma(1-y)\,dy \end{align} }[/math]
The integral [math]\displaystyle{ G = \operatorname{Ti}_2(1)=\int_0^1 \frac{\arctan t}{t}\,dt }[/math] is a known special function, called the inverse tangent integral, and was extensively studied by Srinivasa Ramanujan.
Relation to other special functions
G appears in values of the second polygamma function, also called the trigamma function, at fractional arguments:
[math]\displaystyle{ \begin{align} \psi_1 \left(\tfrac14\right) &= \pi^2 + 8G \\ \psi_1 \left(\tfrac34\right) &= \pi^2 - 8G. \end{align} }[/math]
Simon Plouffe gives an infinite collection of identities between the trigamma function, π2 and Catalan's constant; these are expressible as paths on a graph.
Catalan's constant occurs frequently in relation to the Clausen function, the inverse tangent integral, the inverse sine integral, the Barnes G-function, as well as integrals and series summable in terms of the aforementioned functions.
As a particular example, by first expressing the inverse tangent integral in its closed form – in terms of Clausen functions – and then expressing those Clausen functions in terms of the Barnes G-function, the following expression is obtained (see Clausen function for more):
[math]\displaystyle{ G=4\pi \log\left( \frac{ G\left(\frac{3}{8}\right) G\left(\frac{7}{8}\right) }{ G\left(\frac{1}{8}\right) G\left(\frac{5}{8}\right) } \right) +4 \pi \log \left( \frac{ \Gamma\left(\frac{3}{8}\right) }{ \Gamma\left(\frac{1}{8}\right) } \right) +\frac{\pi}{2} \log \left( \frac{1+\sqrt{2} }{2 \left(2-\sqrt{2}\right)} \right). }[/math]
If one defines the Lerch transcendent Φ(z,s,α) (related to the Lerch zeta function) by [math]\displaystyle{ \Phi(z, s, \alpha) = \sum_{n=0}^\infty \frac { z^n} {(n+\alpha)^s}, }[/math] then [math]\displaystyle{ G = \tfrac{1}{4}\Phi\left(-1, 2, \tfrac{1}{2}\right). }[/math]
Quickly converging series
The following two formulas involve quickly converging series, and are thus appropriate for numerical computation: [math]\displaystyle{ \begin{align} G & = 3 \sum_{n=0}^\infty \frac{1}{2^{4n}} \left(-\frac{1}{2(8n+2)^2}+\frac{1}{2^2(8n+3)^2}-\frac{1}{2^3(8n+5)^2}+\frac{1}{2^3(8n+6)^2}-\frac{1}{2^4(8n+7)^2}+\frac{1}{2(8n+1)^2}\right)- \\ & \qquad -2 \sum_{n=0}^\infty \frac{1}{2^{12n}} \left(\frac{1}{2^4(8n+2)^2}+\frac{1}{2^6(8n+3)^2}-\frac{1}{2^9(8n+5)^2}-\frac{1}{2^{10} (8n+6)^2}-\frac{1}{2^{12} (8n+7)^2}+\frac{1}{2^3(8n+1)^2}\right) \end{align} }[/math] and [math]\displaystyle{ G = \frac{\pi}{8}\log\left(2 + \sqrt{3}\right) + \frac{3}{8}\sum_{n=0}^\infty \frac{1}{(2n+1)^2 \binom{2n}{n}}. }[/math]
The theoretical foundations for such series are given by Broadhurst, for the first formula,[20] and Ramanujan, for the second formula.[21] The algorithms for fast evaluation of the Catalan constant were constructed by E. Karatsuba.[22][23] Using these series, calculating Catalan's constant is now about as fast as calculating Apery's constant, [math]\displaystyle{ \zeta(3) }[/math].[24]
Other quickly converging series, due to Guillera and Pilehrood and employed by the y-cruncher software, include:[24]
- [math]\displaystyle{ G = \frac{1}{2}\sum_{k=0}^{\infty }\frac{(-8)^{k}(3k+2)}{(2k+1)^{3}{\binom{2k}{k}}^{3}} }[/math]
- [math]\displaystyle{ G = \frac{1}{64}\sum_{k=1}^{\infty }\frac{256^{k}(580k^2-184k+15)}{k^3(2k-1)\binom{6k}{3k}\binom{6k}{4k}\binom{4k}{2k}} }[/math]
- [math]\displaystyle{ G = -\frac{1}{1024}\sum_{k=1}^{\infty }\frac{(-4096)^k(45136k^4-57184k^3+21240k^2-3160k+165)}{k^3(2k-1)^3}\left( \frac{(2k)!^6(3k)!^3}{k!^3(6k)!^3} \right) }[/math]
All of these series have time complexity [math]\displaystyle{ O(n\log(n)^3) }[/math].[24]
Continued fraction
G can be expressed in the following form[25]
- [math]\displaystyle{ G=\cfrac{1}{1+\cfrac{1^4}{8+\cfrac{3^4}{16+\cfrac{5^4}{24+\cfrac{7^4}{32+\cfrac{9^4}{40+\ddots}}}}}} }[/math]
- The simple continued fraction is given by[26]
- [math]\displaystyle{ G=\cfrac{1}{1+\cfrac{1}{10+\cfrac{1}{1+\cfrac{1}{8+\cfrac{1}{1+\cfrac{1}{88+\ddots}}}}}} }[/math]
- This continued fraction would have infinite terms if and only if [math]\displaystyle{ G }[/math] is irrational, which is still unresolved.
See also
- Gieseking manifold
- List of mathematical constants
- Mathematical constant
- Particular values of Riemann zeta function
References
- ↑ Papanikolaou, Thomas (March 1997). Catalan's Constant to 1,500,000 Places. https://www.gutenberg.org/ebooks/812.
- ↑ Nesterenko, Yu. V. (January 2016), "On Catalan's constant", Proceedings of the Steklov Institute of Mathematics 292 (1): 153–170, doi:10.1134/s0081543816010107.
- ↑ Bailey, David H.; Borwein, Jonathan M.; Mattingly, Andrew; Wightwick, Glenn (2013), "The computation of previously inaccessible digits of [math]\displaystyle{ \pi^2 }[/math] and Catalan's constant", Notices of the American Mathematical Society 60 (7): 844–854, doi:10.1090/noti1015
- ↑ "The mathematical achievements of Eugène Catalan", Bulletin de la Société Royale des Sciences de Liège 84: 74–92, 2015, https://popups.uliege.be/0037-9565/index.php?id=4830
- ↑ "Mémoire sur la transformation des séries et sur quelques intégrales définies" (in fr), Ers, Publiés Par l'Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique. Collection in 4, Mémoires de l'Académie royale des sciences, des lettres et des beaux-arts de Belgique (Brussels) 33, 1865
- ↑ Wu, F. Y. (1977), "Number of spanning trees on a lattice", Journal of Physics 10 (6): L113–L115, doi:10.1088/0305-4470/10/6/004, Bibcode: 1977JPhA...10L.113W
- ↑ "A soluble self-avoiding walk problem", Physica 29 (12): 1329–1337, 1963, doi:10.1016/S0031-8914(63)80241-4, Bibcode: 1963Phy....29.1329K
- ↑ "A sieve method for factoring numbers of the form [math]\displaystyle{ n^2+1 }[/math]", Mathematical Tables and Other Aids to Computation 13: 78–86, 1959, doi:10.2307/2001956
- ↑ Wyse, A. B.; Mayall, N. U. (January 1942), "Distribution of Mass in the Spiral Nebulae Messier 31 and Messier 33.", The Astrophysical Journal 95: 24–47, doi:10.1086/144370, Bibcode: 1942ApJ....95...24W
- ↑ van der Kruit, P. C. (March 1988), "The three-dimensional distribution of light and mass in disks of spiral galaxies.", Astronomy & Astrophysics 192: 117–127, Bibcode: 1988A&A...192..117V
- ↑ 11.0 11.1 Gourdon, X.; Sebah, P.. "Constants and Records of Computation". http://numbers.computation.free.fr/Constants/constants.html.
- ↑ "Shigeru Kondo's website". http://ja0hxv.calico.jp/pai/ecatalan.html.
- ↑ 13.0 13.1 "Large Computations". http://www.numberworld.org/nagisa_runs/computations.html. Retrieved 31 January 2009.
- ↑ 14.0 14.1 14.2 14.3 "Catalan's constant records using YMP". http://www.numberworld.org/digits/Catalan/.
- ↑ "Catalan's constant records using YMP". http://www.numberworld.org/y-cruncher/.
- ↑ "Catalan's constant world record by Seungmin Kim". 23 July 2019. https://ehfd.github.io/world-record/catalans-constant/.
- ↑ 17.0 17.1 "Records set by y-cruncher". http://www.numberworld.org/y-cruncher/records.html.
- ↑ Stewart, Seán M. (2020), "A Catalan constant inspired integral odyssey", The Mathematical Gazette 104 (561): 449–459, doi:10.1017/mag.2020.99
- ↑ Blagouchine, Iaroslav (2014). "Rediscovery of Malmsten's integrals, their evaluation by contour integration methods and some related results". The Ramanujan Journal 35: 21–110. doi:10.1007/s11139-013-9528-5. https://iblagouchine.perso.centrale-marseille.fr/publications/Blagouchine-Malmsten-integrals-and-their-evaluation-by-contour-integration-methods-(Ramanujan-J-2014).pdf. Retrieved 2018-10-01.
- ↑ Broadhurst, D. J. (1998). "Polylogarithmic ladders, hypergeometric series and the ten millionth digits of ζ(3) and ζ(5)". arXiv:math.CA/9803067.
- ↑ Berndt, B. C. (1985). Ramanujan's Notebook, Part I. Springer Verlag. p. 289. ISBN 978-1-4612-1088-7.
- ↑ Karatsuba, E. A. (1991). "Fast evaluation of transcendental functions". Probl. Inf. Transm. 27 (4): 339–360.
- ↑ Karatsuba, E. A. (2001). "Fast computation of some special integrals of mathematical physics". in Krämer, W.; von Gudenberg, J. W.. Scientific Computing, Validated Numerics, Interval Methods. pp. 29–41. doi:10.1007/978-1-4757-6484-0_3. https://archive.org/details/scientificcomput00wals_919.
- ↑ 24.0 24.1 24.2 Alexander Yee (14 May 2019). "Formulas and Algorithms". http://www.numberworld.org/y-cruncher/internals/formulas.html.
- ↑ Bowman, D.; Mc Laughlin, J. (2002). "Polynomial continued fractions" (in English). Acta Arithmetica 103 (4): 329–342. doi:10.4064/aa103-4-3. Bibcode: 2002AcAri.103..329B. https://www.wcupa.edu/sciences-mathematics/mathematics/jMcLaughlin/documents/4paper1.pdf.
- ↑ "A014538 - OEIS". http://oeis.org/A014538.
Further reading
- Adamchik, Victor (2002). "A certain series associated with Catalan's constant". Zeitschrift für Analysis und ihre Anwendungen 21 (3): 1–10. doi:10.4171/ZAA/1110. http://www-2.cs.cmu.edu/~adamchik/articles/csum.html. Retrieved 2005-07-14.
- Fee, Gregory J. (1990). "Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC '90, Tokyo, Japan, August 20-24, 1990". in Watanabe, Shunro; Nagata, Morio. ACM. pp. 157–160. doi:10.1145/96877.96917. ISBN 0201548925.
- Bradley, David M. (1999). "A class of series acceleration formulae for Catalan's constant". The Ramanujan Journal 3 (2): 159–173. doi:10.1023/A:1006945407723.
- Bradley, David M. (2007). "A class of series acceleration formulae for Catalan's constant". The Ramanujan Journal 3 (2): 159–173. doi:10.1023/A:1006945407723. Bibcode: 2007arXiv0706.0356B.
External links
- Adamchik, Victor. "33 representations for Catalan's constant". Archived from the original on 2016-08-07. https://web.archive.org/web/20160807111945/https://www.cs.cmu.edu/~adamchik/articles/catalan/catalan.htm.
- Plouffe, Simon (1993). "A few identities (III) with Catalan". Archived from the original on 2019-06-26. https://web.archive.org/web/20190626124124/https://lacim.uqam.ca/~plouffe/IntegerRelations/identities3a.html. (Provides over one hundred different identities).
- Plouffe, Simon (1999). "A few identities with Catalan constant and Pi^2". Archived from the original on 2019-06-26. https://web.archive.org/web/20190626124128/https://lacim.uqam.ca/~plouffe/IntegerRelations/identities3.html. (Provides a graphical interpretation of the relations)
- Fee, Greg (1996). Catalan's Constant (Ramanujan's Formula). https://www.gutenberg.org/ebooks/682. (Provides the first 300,000 digits of Catalan's constant)
- Bradley, David M. (2001), Representations of Catalan's constant
- Johansson, Fredrik. "0.915965594177219015054603514932". Ordner, a catalog of real numbers in Fungrim. https://fungrim.org/ordner/0.915965594177219015054603514932/. Retrieved 21 April 2021.
- "Catalan's Constant". Let's Learn, Nemo!. 10 August 2020. https://www.youtube.com/watch?v=e5wqw2_EkxQ&list=PLW1_9UnhaSkGqlwbQphLMGCx2JvaGu1HB&index=72.
- Weisstein, Eric W.. "Catalan's Constant". http://mathworld.wolfram.com/CatalansConstant.html.
- Hazewinkel, Michiel, ed. (2001), "Catalan constant", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4, https://www.encyclopediaofmath.org/index.php?title=p/c130040
Original source: https://en.wikipedia.org/wiki/Catalan's constant.
Read more |