Jacobi triple product

From HandWiki
Short description: Mathematical identity found by Jacobi in 1829

In mathematics, the Jacobi triple product is the mathematical identity:

m=1(1x2m)(1+x2m1y2)(1+x2m1y2)=n=xn2y2n,

for complex numbers x and y, with |x| < 1 and y ≠ 0.

It was introduced by Jacobi (1829) in his work Fundamenta Nova Theoriae Functionum Ellipticarum.

The Jacobi triple product identity is the Macdonald identity for the affine root system of type A1, and is the Weyl denominator formula for the corresponding affine Kac–Moody algebra.

Properties

The basis of Jacobi's proof relies on Euler's pentagonal number theorem, which is itself a specific case of the Jacobi Triple Product Identity.

Let x=qq and y2=q. Then we have

ϕ(q)=m=1(1qm)=n=(1)nq3n2n2.

The Jacobi Triple Product also allows the Jacobi theta function to be written as an infinite product as follows:

Let x=eiπτ and y=eiπz.

Then the Jacobi theta function

ϑ(z;τ)=n=eπin2τ+2πinz

can be written in the form

n=y2nxn2.

Using the Jacobi Triple Product Identity we can then write the theta function as the product

ϑ(z;τ)=m=1(1e2mπiτ)[1+e(2m1)πiτ+2πiz][1+e(2m1)πiτ2πiz].

There are many different notations used to express the Jacobi triple product. It takes on a concise form when expressed in terms of q-Pochhammer symbols:

n=qn(n+1)2zn=(q;q)(1z;q)(zq;q),

where (a;q) is the infinite q-Pochhammer symbol.

It enjoys a particularly elegant form when expressed in terms of the Ramanujan theta function. For |ab|<1 it can be written as

n=an(n+1)2bn(n1)2=(a;ab)(b;ab)(ab;ab).

Proof

Let fx(y)=m=1(1x2m)(1+x2m1y2)(1+x2m1y2)

Substituting xy for y and multiplying the new terms out gives

fx(xy)=1+x1y21+xy2fx(y)=x1y2fx(y)

Since fx is meromorphic for |y|>0, it has a Laurent series

fx(y)=n=cn(x)y2n

which satisfies

n=cn(x)x2n+1y2n=xfx(xy)=y2fx(y)=n=cn+1(x)y2n

so that

cn+1(x)=cn(x)x2n+1==c0(x)x(n+1)2

and hence

fx(y)=c0(x)n=xn2y2n

Evaluating c0(x)

Showing that c0(x)=1 is technical. One way is to set y=1 and show both the numerator and the denominator of

1c0(e2iπz)=n=e2iπn2zm=1(1e2iπmz)(1+e2iπ(2m1)z)2

are weight 1/2 modular under z14z, since they are also 1-periodic and bounded on the upper half plane the quotient has to be constant so that c0(x)=c0(0)=1.

Other proofs

A different proof is given by G. E. Andrews based on two identities of Euler.[1]

For the analytic case, see Apostol.[2]

References

  1. Andrews, George E. (1965-02-01). "A simple proof of Jacobi's triple product identity" (in en-US). Proceedings of the American Mathematical Society 16 (2): 333. doi:10.1090/S0002-9939-1965-0171725-X. ISSN 0002-9939. 
  2. Chapter 14, theorem 14.6 of Apostol, Tom M. (1976), Introduction to analytic number theory, Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3