Jordan's theorem (symmetric group)
From HandWiki
In finite group theory, Jordan's theorem states that if a primitive permutation group G is a subgroup of the symmetric group Sn and contains a p-cycle for some prime number p < n − 2, then G is either the whole symmetric group Sn or the alternating group An. It was first proved by Camille Jordan. The statement can be generalized to the case that p is a prime power.
References
- Griess, Robert L. (1998), Twelve sporadic groups, Springer, p. 5, ISBN 978-3-540-62778-4
- Isaacs, I. Martin (2008), Finite group theory, AMS, p. 245, ISBN 978-0-8218-4344-4
- Neumann, Peter M. (1975), "Primitive permutation groups containing a cycle of prime power length", Bulletin of the London Mathematical Society 7 (3): 298–299, doi:10.1112/blms/7.3.298, http://blms.oxfordjournals.org/content/7/3/298.extract
External links
Original source: https://en.wikipedia.org/wiki/Jordan's theorem (symmetric group).
Read more |