Jordan's totient function

From HandWiki
Short description: A function in mathematics, number theory

In number theory, Jordan's totient function, denoted as [math]\displaystyle{ J_k(n) }[/math], where [math]\displaystyle{ k }[/math] is a positive integer, is a function of a positive integer, [math]\displaystyle{ n }[/math], that equals the number of [math]\displaystyle{ k }[/math]-tuples of positive integers that are less than or equal to [math]\displaystyle{ n }[/math] and that together with [math]\displaystyle{ n }[/math] form a coprime set of [math]\displaystyle{ k+1 }[/math] integers

Jordan's totient function is a generalization of Euler's totient function, which is the same as [math]\displaystyle{ J_1(n) }[/math]. The function is named after Camille Jordan.

Definition

For each positive integer [math]\displaystyle{ k }[/math], Jordan's totient function [math]\displaystyle{ J_k }[/math] is multiplicative and may be evaluated as

[math]\displaystyle{ J_k(n)=n^k \prod_{p|n}\left(1-\frac{1}{p^k}\right) \, }[/math], where [math]\displaystyle{ p }[/math] ranges through the prime divisors of [math]\displaystyle{ n }[/math].

Properties

  • [math]\displaystyle{ \sum_{d | n } J_k(d) = n^k. \, }[/math]
which may be written in the language of Dirichlet convolutions as[1]
[math]\displaystyle{ J_k(n) \star 1 = n^k\, }[/math]
and via Möbius inversion as
[math]\displaystyle{ J_k(n) = \mu(n) \star n^k }[/math].
Since the Dirichlet generating function of [math]\displaystyle{ \mu }[/math] is [math]\displaystyle{ 1/\zeta(s) }[/math] and the Dirichlet generating function of [math]\displaystyle{ n^k }[/math] is [math]\displaystyle{ \zeta(s-k) }[/math], the series for [math]\displaystyle{ J_k }[/math] becomes
[math]\displaystyle{ \sum_{n\ge 1}\frac{J_k(n)}{n^s} = \frac{\zeta(s-k)}{\zeta(s)} }[/math].
[math]\displaystyle{ J_k(n) \sim \frac{n^k}{\zeta(k+1)} }[/math].
  • The Dedekind psi function is
[math]\displaystyle{ \psi(n) = \frac{J_2(n)}{J_1(n)} }[/math],
and by inspection of the definition (recognizing that each factor in the product over the primes is a cyclotomic polynomial of [math]\displaystyle{ p^{-k} }[/math]), the arithmetic functions defined by [math]\displaystyle{ \frac{J_k(n)}{J_1(n)} }[/math] or [math]\displaystyle{ \frac{J_{2k}(n)}{J_k(n)} }[/math] can also be shown to be integer-valued multiplicative functions.
  • [math]\displaystyle{ \sum_{\delta\mid n}\delta^sJ_r(\delta)J_s\left(\frac{n}{\delta}\right) = J_{r+s}(n) }[/math].[2]

Order of matrix groups

  • The general linear group of matrices of order [math]\displaystyle{ m }[/math] over [math]\displaystyle{ \mathbf{Z}/n }[/math] has order[3]
[math]\displaystyle{ |\operatorname{GL}(m,\mathbf{Z}/n)|=n^{\frac{m(m-1)}{2}}\prod_{k=1}^m J_k(n). }[/math]
  • The special linear group of matrices of order [math]\displaystyle{ m }[/math] over [math]\displaystyle{ \mathbf{Z}/n }[/math] has order
[math]\displaystyle{ |\operatorname{SL}(m,\mathbf{Z}/n)|=n^{\frac{m(m-1)}{2}}\prod_{k=2}^m J_k(n). }[/math]
  • The symplectic group of matrices of order [math]\displaystyle{ m }[/math] over [math]\displaystyle{ \mathbf{Z}/n }[/math] has order
[math]\displaystyle{ |\operatorname{Sp}(2m,\mathbf{Z}/n)|=n^{m^2}\prod_{k=1}^m J_{2k}(n). }[/math]

The first two formulas were discovered by Jordan.

Examples

Notes

  1. Sándor & Crstici (2004) p.106
  2. Holden et al in external links. The formula is Gegenbauer's.
  3. All of these formulas are from Andrica and Piticari in #External links.

References

External links