Jordan's totient function
In number theory, Jordan's totient function, denoted as [math]\displaystyle{ J_k(n) }[/math], where [math]\displaystyle{ k }[/math] is a positive integer, is a function of a positive integer, [math]\displaystyle{ n }[/math], that equals the number of [math]\displaystyle{ k }[/math]-tuples of positive integers that are less than or equal to [math]\displaystyle{ n }[/math] and that together with [math]\displaystyle{ n }[/math] form a coprime set of [math]\displaystyle{ k+1 }[/math] integers
Jordan's totient function is a generalization of Euler's totient function, which is the same as [math]\displaystyle{ J_1(n) }[/math]. The function is named after Camille Jordan.
Definition
For each positive integer [math]\displaystyle{ k }[/math], Jordan's totient function [math]\displaystyle{ J_k }[/math] is multiplicative and may be evaluated as
- [math]\displaystyle{ J_k(n)=n^k \prod_{p|n}\left(1-\frac{1}{p^k}\right) \, }[/math], where [math]\displaystyle{ p }[/math] ranges through the prime divisors of [math]\displaystyle{ n }[/math].
Properties
- [math]\displaystyle{ \sum_{d | n } J_k(d) = n^k. \, }[/math]
- which may be written in the language of Dirichlet convolutions as[1]
- [math]\displaystyle{ J_k(n) \star 1 = n^k\, }[/math]
- and via Möbius inversion as
- [math]\displaystyle{ J_k(n) = \mu(n) \star n^k }[/math].
- Since the Dirichlet generating function of [math]\displaystyle{ \mu }[/math] is [math]\displaystyle{ 1/\zeta(s) }[/math] and the Dirichlet generating function of [math]\displaystyle{ n^k }[/math] is [math]\displaystyle{ \zeta(s-k) }[/math], the series for [math]\displaystyle{ J_k }[/math] becomes
- [math]\displaystyle{ \sum_{n\ge 1}\frac{J_k(n)}{n^s} = \frac{\zeta(s-k)}{\zeta(s)} }[/math].
- An average order of [math]\displaystyle{ J_k(n) }[/math] is
- [math]\displaystyle{ J_k(n) \sim \frac{n^k}{\zeta(k+1)} }[/math].
- The Dedekind psi function is
- [math]\displaystyle{ \psi(n) = \frac{J_2(n)}{J_1(n)} }[/math],
- and by inspection of the definition (recognizing that each factor in the product over the primes is a cyclotomic polynomial of [math]\displaystyle{ p^{-k} }[/math]), the arithmetic functions defined by [math]\displaystyle{ \frac{J_k(n)}{J_1(n)} }[/math] or [math]\displaystyle{ \frac{J_{2k}(n)}{J_k(n)} }[/math] can also be shown to be integer-valued multiplicative functions.
- [math]\displaystyle{ \sum_{\delta\mid n}\delta^sJ_r(\delta)J_s\left(\frac{n}{\delta}\right) = J_{r+s}(n) }[/math].[2]
Order of matrix groups
- The general linear group of matrices of order [math]\displaystyle{ m }[/math] over [math]\displaystyle{ \mathbf{Z}/n }[/math] has order[3]
- [math]\displaystyle{ |\operatorname{GL}(m,\mathbf{Z}/n)|=n^{\frac{m(m-1)}{2}}\prod_{k=1}^m J_k(n). }[/math]
- The special linear group of matrices of order [math]\displaystyle{ m }[/math] over [math]\displaystyle{ \mathbf{Z}/n }[/math] has order
- [math]\displaystyle{ |\operatorname{SL}(m,\mathbf{Z}/n)|=n^{\frac{m(m-1)}{2}}\prod_{k=2}^m J_k(n). }[/math]
- The symplectic group of matrices of order [math]\displaystyle{ m }[/math] over [math]\displaystyle{ \mathbf{Z}/n }[/math] has order
- [math]\displaystyle{ |\operatorname{Sp}(2m,\mathbf{Z}/n)|=n^{m^2}\prod_{k=1}^m J_{2k}(n). }[/math]
The first two formulas were discovered by Jordan.
Examples
- Explicit lists in the OEIS are J2 in OEIS: A007434, J3 in OEIS: A059376, J4 in OEIS: A059377, J5 in OEIS: A059378, J6 up to J10 in OEIS: A069091 up to OEIS: A069095.
- Multiplicative functions defined by ratios are J2(n)/J1(n) in OEIS: A001615, J3(n)/J1(n) in OEIS: A160889, J4(n)/J1(n) in OEIS: A160891, J5(n)/J1(n) in OEIS: A160893, J6(n)/J1(n) in OEIS: A160895, J7(n)/J1(n) in OEIS: A160897, J8(n)/J1(n) in OEIS: A160908, J9(n)/J1(n) in OEIS: A160953, J10(n)/J1(n) in OEIS: A160957, J11(n)/J1(n) in OEIS: A160960.
- Examples of the ratios J2k(n)/Jk(n) are J4(n)/J2(n) in OEIS: A065958, J6(n)/J3(n) in OEIS: A065959, and J8(n)/J4(n) in OEIS: A065960.
Notes
References
- L. E. Dickson (1971). History of the Theory of Numbers, Vol. I. Chelsea Publishing. p. 147. ISBN 0-8284-0086-5.
- M. Ram Murty (2001). Problems in Analytic Number Theory. Graduate Texts in Mathematics. 206. Springer-Verlag. p. 11. ISBN 0-387-95143-1.
- Sándor, Jozsef; Crstici, Borislav (2004). Handbook of number theory II. Dordrecht: Kluwer Academic. pp. 32–36. ISBN 1-4020-2546-7.
External links
- Andrica, Dorin; Piticari, Mihai (2004). "On some extensions of Jordan's arithmetic functions". Acta Universitatis Apulensis 7: 13-22. https://eudml.org/doc/126410.
- Holden, Matthew; Orrison, Michael; Vrable, Michael. "Yet Another Generalization of Euler's Totient Function". http://www.math.hmc.edu/~orrison/research/papers/totient.pdf.
Original source: https://en.wikipedia.org/wiki/Jordan's totient function.
Read more |