Noncototient
In number theory, a noncototient is a positive integer n that cannot be expressed as the difference between a positive integer m and the number of coprime integers below it. That is, m − φ(m) = n, where φ stands for Euler's totient function, has no solution for m. The cototient of n is defined as n − φ(n), so a noncototient is a number that is never a cototient.
It is conjectured that all noncototients are even. This follows from a modified form of the slightly stronger version of the Goldbach conjecture: if the even number n can be represented as a sum of two distinct primes p and q, then
[math]\displaystyle{ \begin{align} pq - \varphi(pq) &= pq - (p-1)(q-1) \\ &= p + q - 1 \\ &= n - 1. \end{align} }[/math]
It is expected that every even number larger than 6 is a sum of two distinct primes, so probably no odd number larger than 5 is a noncototient. The remaining odd numbers are covered by the observations 1 = 2 – φ(2), 3 = 9 – φ(9), and 5 = 25 – φ(25).
For even numbers, it can be shown [math]\displaystyle{ \begin{align} 2pq - \varphi(2pq) &= 2pq - (p-1)(q-1) \\ &= pq + p + q - 1 \\ &= (p+1)(q+1) - 2 \end{align} }[/math]
Thus, all even numbers n such that n + 2 can be written as (p + 1)(q + 1) with p, q primes are cototients.
The first few noncototients are
- 10, 26, 34, 50, 52, 58, 86, 100, 116, 122, 130, 134, 146, 154, 170, 172, 186, 202, 206, 218, 222, 232, 244, 260, 266, 268, 274, 290, 292, 298, 310, 326, 340, 344, 346, 362, 366, 372, 386, 394, 404, 412, 436, 466, 470, 474, 482, 490, ... (sequence A005278 in the OEIS)
The cototient of n are
- 0, 1, 1, 2, 1, 4, 1, 4, 3, 6, 1, 8, 1, 8, 7, 8, 1, 12, 1, 12, 9, 12, 1, 16, 5, 14, 9, 16, 1, 22, 1, 16, 13, 18, 11, 24, 1, 20, 15, 24, 1, 30, 1, 24, 21, 24, 1, 32, 7, 30, 19, 28, 1, 36, 15, 32, 21, 30, 1, 44, 1, 32, 27, 32, 17, 46, 1, 36, 25, 46, 1, 48, ... (sequence A051953 in the OEIS)
Least k such that the cototient of k is n are (start with n = 0, 0 if no such k exists)
- 1, 2, 4, 9, 6, 25, 10, 15, 12, 21, 0, 35, 18, 33, 26, 39, 24, 65, 34, 51, 38, 45, 30, 95, 36, 69, 0, 63, 52, 161, 42, 87, 48, 93, 0, 75, 54, 217, 74, 99, 76, 185, 82, 123, 60, 117, 66, 215, 72, 141, 0, ... (sequence A063507 in the OEIS)
Greatest k such that the cototient of k is n are (start with n = 0, 0 if no such k exists)
- 1, ∞, 4, 9, 8, 25, 10, 49, 16, 27, 0, 121, 22, 169, 26, 55, 32, 289, 34, 361, 38, 85, 30, 529, 46, 133, 0, 187, 52, 841, 58, 961, 64, 253, 0, 323, 68, 1369, 74, 391, 76, 1681, 82, 1849, 86, 493, 70, 2209, 94, 589, 0, ... (sequence A063748 in the OEIS)
Number of ks such that k − φ(k) is n are (start with n = 0)
- 1, ∞, 1, 1, 2, 1, 1, 2, 3, 2, 0, 2, 3, 2, 1, 2, 3, 3, 1, 3, 1, 3, 1, 4, 4, 3, 0, 4, 1, 4, 3, 3, 4, 3, 0, 5, 2, 2, 1, 4, 1, 5, 1, 4, 2, 4, 2, 6, 5, 5, 0, 3, 0, 6, 2, 4, 2, 5, 0, 7, 4, 3, 1, 8, 4, 6, 1, 3, 1, 5, 2, 7, 3, ... (sequence A063740 in the OEIS)
Erdős (1913-1996) and Sierpinski (1882-1969) asked whether there exist infinitely many noncototients. This was finally answered in the affirmative by Browkin and Schinzel (1995), who showed every member of the infinite family [math]\displaystyle{ 2^k \cdot 509203 }[/math] is an example (See Riesel number). Since then other infinite families, of roughly the same form, have been given by Flammenkamp and Luca (2000).
n | Numbers k such that k − φ(k) = n |
---|---|
1 | all primes |
2 | 4 |
3 | 9 |
4 | 6, 8 |
5 | 25 |
6 | 10 |
7 | 15, 49 |
8 | 12, 14, 16 |
9 | 21, 27 |
10 | |
11 | 35, 121 |
12 | 18, 20, 22 |
13 | 33, 169 |
14 | 26 |
15 | 39, 55 |
16 | 24, 28, 32 |
17 | 65, 77, 289 |
18 | 34 |
19 | 51, 91, 361 |
20 | 38 |
21 | 45, 57, 85 |
22 | 30 |
23 | 95, 119, 143, 529 |
24 | 36, 40, 44, 46 |
25 | 69, 125, 133 |
26 | |
27 | 63, 81, 115, 187 |
28 | 52 |
29 | 161, 209, 221, 841 |
30 | 42, 50, 58 |
31 | 87, 247, 961 |
32 | 48, 56, 62, 64 |
33 | 93, 145, 253 |
34 | |
35 | 75, 155, 203, 299, 323 |
36 | 54, 68 |
37 | 217, 1369 |
38 | 74 |
39 | 99, 111, 319, 391 |
40 | 76 |
41 | 185, 341, 377, 437, 1681 |
42 | 82 |
43 | 123, 259, 403, 1849 |
44 | 60, 86 |
45 | 117, 129, 205, 493 |
46 | 66, 70 |
47 | 215, 287, 407, 527, 551, 2209 |
48 | 72, 80, 88, 92, 94 |
49 | 141, 301, 343, 481, 589 |
50 | |
51 | 235, 451, 667 |
52 | |
53 | 329, 473, 533, 629, 713, 2809 |
54 | 78, 106 |
55 | 159, 175, 559, 703 |
56 | 98, 104 |
57 | 105, 153, 265, 517, 697 |
58 | |
59 | 371, 611, 731, 779, 851, 899, 3481 |
60 | 84, 100, 116, 118 |
61 | 177, 817, 3721 |
62 | 122 |
63 | 135, 147, 171, 183, 295, 583, 799, 943 |
64 | 96, 112, 124, 128 |
65 | 305, 413, 689, 893, 989, 1073 |
66 | 90 |
67 | 427, 1147, 4489 |
68 | 134 |
69 | 201, 649, 901, 1081, 1189 |
70 | 102, 110 |
71 | 335, 671, 767, 1007, 1247, 1271, 5041 |
72 | 108, 136, 142 |
73 | 213, 469, 793, 1333, 5329 |
74 | 146 |
75 | 207, 219, 275, 355, 1003, 1219, 1363 |
76 | 148 |
77 | 245, 365, 497, 737, 1037, 1121, 1457, 1517 |
78 | 114 |
79 | 511, 871, 1159, 1591, 6241 |
80 | 152, 158 |
81 | 189, 237, 243, 781, 1357, 1537 |
82 | 130 |
83 | 395, 803, 923, 1139, 1403, 1643, 1739, 1763, 6889 |
84 | 164, 166 |
85 | 165, 249, 325, 553, 949, 1273 |
86 | |
87 | 415, 1207, 1711, 1927 |
88 | 120, 172 |
89 | 581, 869, 1241, 1349, 1541, 1769, 1829, 1961, 2021, 7921 |
90 | 126, 178 |
91 | 267, 1027, 1387, 1891 |
92 | 132, 140 |
93 | 261, 445, 913, 1633, 2173 |
94 | 138, 154 |
95 | 623, 1079, 1343, 1679, 1943, 2183, 2279 |
96 | 144, 160, 176, 184, 188 |
97 | 1501, 2077, 2257, 9409 |
98 | 194 |
99 | 195, 279, 291, 979, 1411, 2059, 2419, 2491 |
100 | |
101 | 485, 1157, 1577, 1817, 2117, 2201, 2501, 2537, 10201 |
102 | 202 |
103 | 303, 679, 2263, 2479, 2623, 10609 |
104 | 206 |
105 | 225, 309, 425, 505, 1513, 1909, 2773 |
106 | 170 |
107 | 515, 707, 1067, 1691, 2291, 2627, 2747, 2867, 11449 |
108 | 156, 162, 212, 214 |
109 | 321, 721, 1261, 2449, 2701, 2881, 11881 |
110 | 150, 182, 218 |
111 | 231, 327, 535, 1111, 2047, 2407, 2911, 3127 |
112 | 196, 208 |
113 | 545, 749, 1133, 1313, 1649, 2573, 2993, 3053, 3149, 3233, 12769 |
114 | 226 |
115 | 339, 475, 763, 1339, 1843, 2923, 3139 |
116 | |
117 | 297, 333, 565, 1177, 1717, 2581, 3337 |
118 | 174, 190 |
119 | 539, 791, 1199, 1391, 1751, 1919, 2231, 2759, 3071, 3239, 3431, 3551, 3599 |
120 | 168, 200, 232, 236 |
121 | 1331, 1417, 1957, 3397 |
122 | |
123 | 1243, 1819, 2323, 3403, 3763 |
124 | 244 |
125 | 625, 1469, 1853, 2033, 2369, 2813, 3293, 3569, 3713, 3869, 3953 |
126 | 186 |
127 | 255, 2071, 3007, 4087, 16129 |
128 | 192, 224, 248, 254, 256 |
129 | 273, 369, 381, 1921, 2461, 2929, 3649, 3901, 4189 |
130 | |
131 | 635, 2147, 2507, 2987, 3131, 3827, 4187, 4307, 4331, 17161 |
132 | 180, 242, 262 |
133 | 393, 637, 889, 3193, 3589, 4453 |
134 | |
135 | 351, 387, 575, 655, 2599, 3103, 4183, 4399 |
136 | 268 |
137 | 917, 1397, 3161, 3317, 3737, 3977, 4661, 4757, 18769 |
138 | 198, 274 |
139 | 411, 1651, 3379, 3811, 4171, 4819, 4891, 19321 |
140 | 204, 220, 278 |
141 | 285, 417, 685, 1441, 3277, 4141, 4717, 4897 |
142 | 230, 238 |
143 | 363, 695, 959, 1703, 2159, 3503, 3959, 4223, 4343, 4559, 5063, 5183 |
144 | 216, 272, 284 |
References
- Browkin, J.; Schinzel, A. (1995). "On integers not of the form n-φ(n)". Colloq. Math. 68 (1): 55–58. doi:10.4064/cm-68-1-55-58.
- Flammenkamp, A.; Luca, F. (2000). "Infinite families of noncototients". Colloq. Math. 86 (1): 37–41. doi:10.4064/cm-86-1-37-41.
- Guy, Richard K. (2004). Unsolved problems in number theory (3rd ed.). Springer-Verlag. pp. 138–142. ISBN 978-0-387-20860-2.
External links
Original source: https://en.wikipedia.org/wiki/Noncototient.
Read more |