Kähler quotient

From HandWiki

In mathematics, specifically in complex geometry, the Kähler quotient of a Kähler manifold [math]\displaystyle{ X }[/math] by a Lie group [math]\displaystyle{ G }[/math] acting on [math]\displaystyle{ X }[/math] by preserving the Kähler structure and with moment map [math]\displaystyle{ \mu : X \to \mathfrak{g}^* }[/math] (with respect to the Kähler form) is the quotient

[math]\displaystyle{ \mu^{-1}(0)/G. }[/math]

If [math]\displaystyle{ G }[/math] acts freely and properly, then [math]\displaystyle{ \mu^{-1}(0)/G }[/math] is a new Kähler manifold whose Kähler form is given by the symplectic quotient construction.[1]

By the Kempf-Ness theorem, a Kähler quotient by a compact Lie group [math]\displaystyle{ G }[/math] is closely related to a geometric invariant theory quotient by the complexification of [math]\displaystyle{ G }[/math].[2]

See also

References

  1. Hitchin, N. J.; Karlhede, A.; Lindström, U.; Roček, M. (1987), "Hyper-Kähler metrics and supersymmetry", Communications in Mathematical Physics 108 (4): 535–589, doi:10.1007/BF01214418, ISSN 0010-3616, https://projecteuclid.org/download/pdf_1/euclid.cmp/1104116624 
  2. *Mumford, David; Fogarty, J.; Kirwan, F. (1994), Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 34 (3rd ed.), Berlin, New York: Springer-Verlag, ISBN 978-3-540-56963-3